cho a,b,c >0 . cmr 1/a + 1/b + 1/c >= 4/(2a+b+c) + 4/(a+2b+c) + 4/(a+b+2c)
giúp mình với các cậu
1. CMR: Nếu a,b,c là độ dài 3 cạnh tam giác thì:
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
2. PTĐT thành nhân tử
a) \(a^6+a^4+a^2b^2+b^4+b^6\)
b) \(a^3+3ab+b^3-1\)
c) \(a^2b^2\left(b-a\right)+b^2c^2\left(c-b\right)-c^2a^2\left(c-a\right)\)
d) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
2.
\(a,Sửa:a^6+a^4+a^2b^2+b^4-b^6\\ =\left(a^6-b^6\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)+\left(a^4+b^4+a^2b^2\right)\\ =\left(a^2-b^2+1\right)\left(a^4+a^2b^2+b^4\right)\\ =\left[\left(a^2+b^2\right)^2-a^2b^2\right]\left(a^2-b^2+1\right)\\ =\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(a^2-b^2+1\right)\\ b,=\left(a^3+b^3\right)-1+3ab\\ =\left(a+b\right)^3-3ab\left(a+b\right)-1+3ab\\ =\left(a+b-1\right)\left(a^2+2ab+b^2+a+b+1\right)-3ab\left(a+b-1\right)\\ =\left(a+b-1\right)\left(a^2+b^2+1+a+b-ab\right)\)
\(c,=a^2b^2\left(b-a\right)+b^2c^2\left(c-a+a-b\right)-c^2a^2\left(c-a\right)\\ =-a^2b^2\left(a-b\right)+b^2c^2\left(a-b\right)+b^2c^2\left(c-a\right)-c^2a^2\left(c-a\right)\\ =\left(a-b\right)\left(b^2c^2-a^2b^2\right)+\left(c-a\right)\left(b^2c^2-c^2a^2\right)\\ =b^2\left(a-b\right)\left(c-a\right)\left(c+a\right)+c^2\left(c-a\right)\left(b-a\right)\left(b+a\right)\\ =\left(a-b\right)\left(c-a\right)\left[b^2\left(c+a\right)-c^2\left(b+a\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b^2c+ab^2-bc^2-ac^2\right)\\ =\left(a-b\right)\left(c-a\right)\left[bc\left(b-c\right)+a\left(b-c\right)\left(b+c\right)\right]\\ =\left(a-b\right)\left(c-a\right)\left(b-c\right)\left(bc+ab+ac\right)\)
Cho a,b,c,d >0, a + b + c + d=4.cmr: a/(1 + b^2c) + b/(1 + c^2d) + c/(1 + d^2a) + d/(1 + a^2b) >=2
Với a,b,c>0.Cmr
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)
\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)
Dấu "=" xảy ra khi \(a=b=c\)
cho a b c là độ dài 3 cạnh của 1 tam giác
CMR \(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)>0
Bạn nào giải nhanh đúng mình tick cho nha
A = 2a2b2 + 2b2c2 + 2a2c2 − a4 − b4 − c4
<=> A = 4a2c2 − ( a4+b4 + c4 − 2a2b2 + 2a2c2 − 2b2c2 )
<=> A = 4a2c2 − ( a2 − b2 + c2)2
<=> A = ( 2ac + a2 − b2 + c2 ) ( 2ac − a2 + b2 − c2 )
<=> A = [ (a+c)2 − b2 ] ( b2 − (a−c)2)
<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\
a+b+c>0
a+c−b>0
b+a−c>0
b−a+c>
=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
A>0 (Dpcm)
Cho a,b,c > 0 . Cmr:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}+\dfrac{4}{a+2b+c}\)
\(vì:a,b,c>0\Rightarrow\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}>0\)
\(Cosi:\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\ge\dfrac{2}{\dfrac{a+b}{2}}=\dfrac{4}{a+b}\)
\(\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}\right)\le\dfrac{1}{16}\left(\dfrac{8}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{2a}+\dfrac{1}{4b}+\dfrac{1}{4c}.tươngtự:\dfrac{4}{a+b+2c}\le\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{2c};\dfrac{4}{a+2b+c}\le\dfrac{1}{4a}+\dfrac{1}{2b}+\dfrac{1}{2c}.\text{cộng vế theo vế ta được:}\dfrac{4}{a+2b+c}+\dfrac{4}{2a+b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đpcm}\right)\)
Áp dụng BĐT \(\dfrac{1}{x+y+z+t}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t}\right)\) với các số dương
Ta có: \(\dfrac{4}{a+a+b+c}\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)
\(\dfrac{4}{a+2b+c}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)
Cộng vế với vế:
\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\le\dfrac{1}{4}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra khi \(a=b=c\)
* Ta cm bđt : \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\forall ab\)
+ \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)
Vì bđt thức cuối luôn đúng mà các phép biến đổi trên là tương đương nên ta có đpcm
Dấu "=" \(\Leftrightarrow x=y\)
+ Áp dụng bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Dấu "=" \(\Leftrightarrow x=y\) ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) Dấu "=" xảy ra \(\Leftrightarrow b=c\)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+c}\) Dấu "=" xảy ra \(\Leftrightarrow a=c\)
Do đó : \(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
+ Áp dụng bđt trên một lần nữa ta có :
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\) Dấu "=" xảy ra \(\Leftrightarrow a=c\)
\(\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{1}{a+b+2c}\) Dấu "=" xảy ra \(\Leftrightarrow a=b\)
\(\dfrac{1}{a+b}+\dfrac{1}{c+a}\ge\dfrac{4}{2a+b+c}\) Dấu "=" xảy ra \(\Leftrightarrow b=c\)
Do đó : \(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{4}{2a+b+c}\)
\(+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)
=> đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. CMR: \(a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2a^2c^2\)
Cho a, b, c > 0 thoả mãn 1/a +1/b 1/c = 4
CMR 1/2a+b+c + 1/a+2b+c +1/a+b+2c < 1
Cmr nếu a,b,c là ba cạnh của 1 tam giác thì \(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)
Lời giải:
Để thuận mắt hơn ta sẽ đi CM:
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2<0\)
Thật vậy:
\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2\)
\(=(a^4+b^4+2a^2b^2)+c^4-4a^2b^2-2b^2c^2-2c^2a^2\)
\(=(a^2+b^2)^2+c^4-4a^2b^2-2c^2(a^2+b^2)\)
\(=(a^2+b^2-c^2)^2-4a^2b^2\)
\(=(a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)\)
\(=[(a-b)^2-c^2][(a+b)^2-c^2]\)
\(=(a-b-c)(a-b+c)(a+b-c)(a+b+c)\)
\(=-(b+c-a)(a+c-b)(a+b-c)(a+b+c)\)
Vì $a,b,c$ là độ dài 3 cạnh tam giác nên:
\(b+c-a>0; a+c-b>0; a+b-c>0; a+b+c>0\)
\(\Rightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=-(b+c-a)(a+c-b)(a+b-c)(a+b+c)<0\)
Ta có đpcm.
CMR với a,b,c dương thì \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0.\)