Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2017 lúc 13:13

Đáp án đúng : B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 10 2017 lúc 6:06

Ta có y ' = - 3 x 2 + 6 x + 3 m . Hàm số nghịch biến trên khoảng (0; +∞) nếu y' ≤ 0 trên khoảng (o; +∞)

Cách 1: Dùng định lí dấu tam thức bậc hai.

Xét phương trình - 3 x 2 + 6 x + 3 m . Ta có Δ' = 9(1 + m)

TH1: Δ' ≤ 0 => m ≤ -1 khi đó, - 3 x 2 + 6 x + 3 m < 0 nên hàm số nghịch biến trên R .

TH2: Δ' > 0 => m > -1; y' = 0 có hai nghiệm phân biệt là x = 1 ±√(1+m) .

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Hàm số nghịch biến trên (0; +∞) <=> 1 + √(1+m) ≤ 0, vô lí.

Từ TH1 và TH2, ta có m ≤ -1

Cách 2: Dùng phương pháp biến thiên hàm số.

Ta có y '   =   - 3 x 2   +   6 x   +   3 m   ≤   0 , ∀x > 0 <=>   3 m   ≤   3 x 2   -   6 x , ∀x > 0

Từ đó suy ra 3 m   ≤   m i n ( 3 x 2   -   6 x ) với x > 0

Mà  3 x 2 - 6 x = 3 ( x 2 - 2 x + 1 ) - 3 = 3 ( x - 1 ) 2 - 3 ≥ - 3 ∀ x

Suy ra: m i n (   3 x 2   –   6 x )   =   -   3 khi x= 1

Do đó 3m ≤ -3 hay m ≤ -1.

Chọn đáp án C.

Trần Đào Tuấn
Xem chi tiết
Nguyen Thuy Hoa
19 tháng 4 2016 lúc 20:25

Ta có \(y'=-3x^2+6x+3m\) \(\Rightarrow\) hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)\(\Leftrightarrow y'\le0\)

với mọi \(x\in\left(0;+\infty\right)\) (*)

Vì \(y'\left(x\right)\) liên tục tại x=0 nên (*)

\(\Leftrightarrow y'\le0\)với mọi \(x\in\)[0;\(+\infty\))

\(\Leftrightarrow-3x^2+6x+3m\le0\) với mọi \(x\in\)[0;\(+\infty\))

\(\Leftrightarrow m\le x^2-2x\)với mọi \(x\in\)[0;\(+\infty\))\(\Leftrightarrow m\le g\left(x\right);\)với mọi \(x\in\)[0;\(+\infty\)) (Trong đó \(g\left(x\right)=x^2-2x\)

\(\Leftrightarrow m\le Min_{\left(0;+\infty\right)}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=x^2-2x\) trên với mọi \(x\in\)[0;\(+\infty\))\(\Rightarrow g'\left(x\right)=2x-2\Rightarrow g'\left(x\right)=0\Leftrightarrow x=1\)

\(\lim\limits_{x\rightarrow+\infty}g\left(x\right)=+\infty;g\left(0\right)=0;g\left(1\right)=-1\)\(\Rightarrow Min_{\left(0;+\infty\right)}g\left(x\right)=-1\) tại x=1

Vậy \(m\le-1\) thì hàm số nghịch biến trên khoảng \(\left(0;+\infty\right)\)

Minh Hảo Nguyễn Thị
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Nguyễn Minh Hằng
19 tháng 4 2016 lúc 14:11

Ta có \(y'=-\left(m-1\right)x^2+2\left(m+2\right)+3m\) \(\Rightarrow\) Hàm đồng biến trên khoảng \(\left(-\infty;-2\right)\Leftrightarrow y'\ge0,x\in\left(-\infty;-2\right)\)(*)

Vì y'(x) liên tục tại x = -2 nên (*) \(\Leftrightarrow y'\ge0;\)

và mọi x thuộc (-\(-\infty;2\) ] (*)

\(\Leftrightarrow-\left(m-1\right)x^2+2\left(m+2\right)x+3m\ge0\), mọi x thuộc (-\(-\infty;2\) ]

\(\Leftrightarrow m\left(-x^2+2x+3\right)\ge-x^2-4x\), mọi x thuộc (-\(-\infty;2\) ]\(\Leftrightarrow m\le g\left(x\right)\), mọi x thuộc (-\(-\infty;2\) ] (Trong đó \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\))

\(\Leftrightarrow m\le Min_{\left(-\infty;-2\right)}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\) trên đoạn  (-\(-\infty;2\) ]

\(\Rightarrow g'\left(x\right)=\frac{-6\left(x^2+x+2\right)}{\left(-x^2+2x+3\right)^2}=\frac{-6\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}{\left(-x^2+2x+3\right)^2}<0\),mọi x thuộc (-\(-\infty;2\) ]

\(\Rightarrow g\left(x\right)\) là hàm số nghịch biến trên  (-\(-\infty;2\) ]

\(\Rightarrow Min_{\left(-\infty;-2\right)}g\left(x\right)=g\left(-2\right)=-\frac{4}{5}\)

Vậy \(m\le-\frac{4}{5}\) thì hàm số đồng biến trên khoảng \(\left(-\infty;-2\right)\)

Đỗ Mai Tài Đức
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 2021 lúc 21:39

\(y'=mx^2-2\left(m-1\right)x+3\left(m-2\right)\)

\(y'\ge0\) ; \(\forall x\ge2\)

\(\Leftrightarrow mx^2-2\left(m-1\right)x+3\left(m-2\right)\ge0\) ; \(\forall x\ge2\)

\(\Leftrightarrow mx^2-2mx+3m\ge6-x\)

\(\Leftrightarrow m\left(x^2-2x+3\right)\ge6-x\)

\(\Leftrightarrow m\ge\dfrac{6-x}{x^2-2x+3}\)

\(\Rightarrow m\ge\max\limits_{x\ge2}\dfrac{6-x}{x^2-2x+3}=\dfrac{4}{3}\)

Vậy \(m\ge\dfrac{4}{3}\)

AT Xuân Chung
Xem chi tiết
qui dao
Xem chi tiết
Xin phép đc giấu tên
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 10 2021 lúc 22:06

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2-3mx+2=0\)

\(\text{Δ}=\left(-3m\right)^2-4\cdot\dfrac{1}{2}\cdot2=9m^2-4\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{2}{3}\\m< -\dfrac{2}{3}\end{matrix}\right.\)