\(\dfrac{2^{15}.9^4}{6^6.8^3}\)
\(\dfrac{4^5.9^4}{8^3.27^3}\);\(\dfrac{4^{20}.3^{35}}{2^{37}.27^{12}}\)\(;\dfrac{5^4.20^4}{25^5.4^5};\dfrac{2^{15}.9^4}{6^6.8^3}\)
\(\dfrac{4^5\cdot9^4}{8^3\cdot27^3}=\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4}{\left(2^3\right)^3\cdot\left(3^3\right)^3}=\dfrac{2^{10}\cdot3^8}{2^9\cdot3^9}=\dfrac{2}{3}\)
\(\dfrac{4^{20}\cdot3^{35}}{2^{37}\cdot27^{12}}=\dfrac{\left(2^2\right)^{20}\cdot3^{35}}{2^{37}\cdot\left(3^3\right)^{12}}=\dfrac{2^{40}\cdot3^{35}}{2^{37}\cdot3^{36}}=\dfrac{2^3}{3}\)
\(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^5\cdot5^5\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{100}\)
\(\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{2^6\cdot3^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=3^2\)
\(\dfrac{2^{15}.9^4}{6^6.8^3}\)
\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(3.2\right)^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{3^6.2^6.2^9}=\dfrac{2^{15}.3^6.3^2}{3^6.2^{15}}=3^2=9\)
\(\dfrac{2^{15}.9^4}{6^6.8^3}\)
\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(3.2\right)^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{3^6.2^6.2^9}=\dfrac{2^{15}.3^6.3^2}{3^6.2^{15}}=3^2=9\)
thực hiện phép tính sau :
\(\left[\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}+\dfrac{2^{15}.9^4}{6^6.8^3}\right]:\dfrac{45^{10}.5^{20}}{7^{15}}\)
=\(\left[\dfrac{\left(0,4.2\right)^5}{\left(0,4\right)^6}+\dfrac{2^9.2^6.3^8}{\left(3.2\right)^6.2^9}\right]=\left[\dfrac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}+\dfrac{2^6.3^8}{3^6.2^6}\right]\)
=\(\left[\dfrac{2^5}{0,4}+3^2\right]\)
=\(\left[80+9\right]=89\)
\(\left[\dfrac{\left(2.0,4\right)^5}{0,4,0,4^5}+\dfrac{2^{15}.3^8}{3^6.2^6.2^9}\right]\div\dfrac{3^{20}.5^{30}}{3^{15}.5^{30}}\)
\(=\left[\dfrac{2^5.0.4^5}{0,4.0,4^5}+\dfrac{2^{15}.3^8}{3^6.2^{15}}\right]\div3^5\)
\(=\left[\dfrac{2^5}{0,4}+3^2\right]\div243\)
\(=80+\left(3^5\div3^2\right)\)
\(=80+3^3\)
\(=80+27\)
\(=107\)
\(\dfrac{8^{14}}{4^4.64^5}\)
\(\dfrac{9^{10}.27^7}{81^7.3^{15}}\)
\(\left(\dfrac{3}{10}\right)^4.\left(0,3\right)^5.\left(\dfrac{10}{3}\right)^{10}\)
\(\dfrac{\left(4^3\right)^2.9^4}{6^7.8^2}\)
\(\dfrac{4^8.9^4}{6^6.8^3}\)
\(3^6.\left(\dfrac{1}{3}\right)^6.81^2.\dfrac{1}{27^2}\) TÍNH
\(\dfrac{8^{14}}{4^4.64^5}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^4.\left(2^5\right)^5}=\dfrac{2^{42}}{2^8.2^{25}}=2^{42-\left(8+25\right)}=2^9\)
\(\dfrac{9^{10}.27^7}{81^7.3^{15}}=\dfrac{\left(3^2\right)^{10}.\left(3^3\right)^7}{\left(3^4\right)^7.3^{15}}=\dfrac{3^{20}.3^{21}}{3^{28}.3^{15}}=\dfrac{3^{20+21}}{3^{28+15}}=\dfrac{3^{41}}{3^{41}.3^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
Có bn nào giải đc câu này ko?
Tính giá trị của biểu thức:
\(\dfrac{2^{15}.9^4}{6^6.8^3}\)
\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=\dfrac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)
Câu 1.Thực hiện phép tính:
a) -1\(\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
b) \(\dfrac{2^{15}.9^4}{6^6.8^3}\)
a. \(-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
\(=\dfrac{-180}{7}+\dfrac{-30}{7}+\left(-105\right).\dfrac{1}{105}\)
\(=\dfrac{-180}{7}+\dfrac{-30}{7}+\left(-1\right)\)
\(=-31\)
b. \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=\dfrac{2^{15}.3^6.3^2}{2^{15}.3^6}=3^2=9\)
\(\dfrac{2^{13}.9^4}{6^6.8^3}\)
\(\dfrac{2^{13}.9^4}{6^6.8^3}=\dfrac{2^{13}.3^8}{3^6.2^6.2^9}=\dfrac{2^{13}.3^8}{3^6.2^{15}}=\dfrac{3^2}{2^2}=\dfrac{9}{4}\)
Rút gọn
a) \(\dfrac{2^{15}.9^4}{6^6.8^3}\)
b) \(\dfrac{45^{15}.5^{15}}{75^{15}}\)
c) \(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}\)
d) \(\left(x^2\right)^5:\left(x^5\right)^2\)
a) \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{3^6.2^6.2^9}=\dfrac{2^{15}.3^8}{3^6.2^{15}}=3^2=9\)
b) \(\dfrac{45^{15}.5^{15}}{75^{15}}=\dfrac{\left(9.5\right)^{15}.5^{15}}{\left(3.25\right)^{15}}=\dfrac{9^{15}.5^{15}.5^{15}}{3^{15}.25^{15}}=\dfrac{\left(3^2\right)^{15}.5^{30}}{3^{15}.\left(5^2\right)^{15}}\)
\(\dfrac{3^{30}.5^{30}}{3^{15}.5^{30}}=3^{15}=14348907\)
c) \(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}\)
\(=\dfrac{2^{20}}{2^{12}}=2^8=256\)
d) \(\dfrac{ \left(x^2\right)^5}{\left(x^5\right)^2}=\dfrac{x^{10}}{x^{10}}=1\)