Tim x
\(\left(3x+1\right)^3=27\)
1. Cho biểu thức A= \(\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)
Tim giá trị của x để A<-1
Đk: x \(\ne\)0; x \(\ne\)\(\pm\)3
Ta có: A = \(\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)
A = \(\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{x^2+3\left(3-x\right)}{3\left(x+3\right)\left(3-x\right)}\)
A = \(\frac{x^2-3x+9}{3x\left(x-3\right)}\cdot\frac{3\left(3-x\right)\left(x+3\right)}{x^2-3x+9}\)
A = \(\frac{-\left(x+3\right)}{x}\)
Để A < -1 <=> \(-\frac{\left(x+3\right)}{x}< -1\) <=> \(\frac{-x-3}{x}+1< 0\)
<=> \(\frac{-x-3+x}{x}< 0\) <=> \(-\frac{3}{x}< 0\)
Do -3 <0 => x> 0
Vậy Để A < -1 <=> x > 0 và x khác 3
Tim x biet
c) (x - 2)(x + 3)>0
d) \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
Bài làm:
c) \(\left(x-2\right)\left(x+3\right)>0\)
Ta xét 2 trường hợp sau:
+ Nếu \(\hept{\begin{cases}x-2>0\\x+3>0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x>-3\end{cases}\Rightarrow}x>2\)
+ Nếu \(\hept{\begin{cases}x-2< 0\\x+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< -3\end{cases}}\Rightarrow x< -3\)
Vậy \(\orbr{\begin{cases}x>2\\x< -3\end{cases}}\)
d) \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Leftrightarrow3x=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{1}{27}\)
Vậy \(x=\frac{1}{27}\)
Học tốt!!!!
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
Tim x
a) \(\left(x+3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1-3x^2\right)=54\)
b) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2+3x^2=-33\)
a)(x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1-3x2)=54
\(\Rightarrow\)x3+9x2+27x+27-x(9x2+6x+1)+(2x+1)(x2-2x+1)=54
\(\Rightarrow\)x3+9x2+27x+27-9x3-6x2-x+2x3-4x2+2x+x2-2x+1=54
\(\Rightarrow\)-6x3+26x+28=54
\(\Rightarrow\)-6x3+26x=54-28
\(\Rightarrow\)-6x3+26x=26
\(\Rightarrow\)-6x3+26x-26=0
\(\Rightarrow\)-2(3x3+13x+14)
a, rut gon A
b, tim x de a<-1
c, tim cac gia tri nguyen cua x de A co gia tri nguyen
cho bthuc B = \(\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x-2}\right)chia\left(x-2+\frac{16-x^2}{x+2}\right)\)rut gon B tính b khi /x/ = 1/2tim x de b=2tim x \(\in\) z de b \(\in\) zBài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
Rút gon: \(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right)\): \(\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
=\(\left[\frac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
=\(\left[\frac{x\left(x-3\right)}{\left(x^2+9\right)\left(x-3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{\left(x^2+9\right)\left(x-3\right)}\right]\)
=\(\frac{x}{x^2+9}\):\(\left[\frac{x^2+9}{\left(x-3\right)\left(x^2+9\right)}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
=\(\frac{x}{x^2+9}\):\(\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
=\(\frac{x}{x^2+9}\):\(\frac{x-3}{x^2+9}\)
=\(\frac{x}{x^2+9}\).\(\frac{x^2+9}{x-3}\)
=\(\frac{x}{x-3}\)
\(\left(\frac{X^2+3X}{X^3+3X^2+9X+27}+\frac{3}{X+9}\right):\left(\frac{1}{X-3}-\frac{6X}{X^3-3X^2+9X-27}\right)\)
= \(\left[\frac{x.\left(x+3\right)}{\left(x+3\right).\left(x^2+9\right)}+\frac{3}{x+9}\right]:\left[\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\) ]
\(=\frac{x+3}{x^2-9}.\frac{\left(x-3\right).\left(x^2+9\right)}{x^2+9-6x}\)
= \(\frac{\left(x-3\right).\left(x+3\right)}{\left(x-3\right)^2}\)
= \(\frac{x+3}{x-3}\)
k mik nhé. Plssss~
tim x biet
\(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(8x\left(2x+1\right)-4x\left(2x-3\right)=-40\)
\(\left(2x-1\right)\left(3x-1\right)-\left(3x-2\right)\left(2x-1\right)=3\)
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .
a, \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Rightarrow3x^2-3x-\left(3x^2-2x\right)=5\)
\(\Rightarrow3x^2-3x-3x^2+2x=5\)
\(\Rightarrow5x=5\Rightarrow x=1\)
Câu b,c làm tương tự! Cứ tách ra là làm được à!
b ) \(8x\left(2x+1\right)-4x\left(2x-3\right)=-40\)
\(\Leftrightarrow16x^2+8x-8x^2+12x=-40\)
\(\Leftrightarrow20x=-40\)
\(\Leftrightarrow x=-2\)
Vậy phương trình có nghiệm x = - 2
Cho biểu thức P=\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)