Phân tích thành nhân tử :
a, 15x4-10x2y+y2
b,-16a4b6-24a5b5-9a6b4
phân tích đa thức thành nhân tử: 5x3-10x2y+5xy2
\(=5x\left(x^2-2xy+y^2\right)\)
\(=5x\left(x-y\right)^2\)
Phân tích thành nhân tử:
\(5x^3-10x^2y+5xy^2=5x\left(x^2-2xy+y^2\right)=5x\left(x-y\right)^2\)
Chúc bạn học tốt!!!
\(5x^3-10x^2y+5xy^2\)
\(=5x\left(x^2-2xy+y^2\right)\)
\(=5x\left(x-y\right)^2\)
Phân tích đa thức thành nhân tử
a) 2x2y3 - 32y3
b) 7x2y - 14xy + 7y
c) 2x3 + 10x2y - xy - 5y2
a) \(=2y^3\left(x^2-16\right)=2y^3\left(x-4\right)\left(x+4\right)\)
b) \(=7y\left(x^2-2x+1\right)=7y\left(x-1\right)^2\)
c) \(=2x^2\left(x+5y\right)-y\left(x+5y\right)=\left(x+5y\right)\left(2x^2-y\right)\)
a: \(2x^2y^3-32y^3=2y^3\left(x-4\right)\left(x+4\right)\)
b: \(7x^2y-14xy+7y=7y\left(x^2-2x+1\right)=7y\left(x-1\right)^2\)
Phân tích đa thức thành nhân tử:
a.10x2y – 20xy2 b. x2 – y2 + 10y – 25 c. x2 – y2 + 3x – 3y
d. x3 + 3x2 – 16x – 48 e. 9x3 + 6x2 + x f. x4 + 5x3 + 15x – 9
\(a,10x^2y-20xy^2=10xy\left(x-2y\right)\\ b,x^2-y^2+10y-25=x^2-\left(y^2-10y+25\right)=x^2-\left(y-5\right)^2=\left(x-y+5\right)\left(x+y-5\right)\\ c,x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\\ d,x^3+3x^2-16x-48=\left(x^3+3x^2\right)-\left(16x+48\right)=x^2\left(x+3\right)-16\left(x+3\right)=\left(x+3\right)\left(x^2-16\right)=\left(x+3\right)\left(x+4\right)\left(x-4\right)\)
\(e,9x^3+6x^2+x=x\left(9x^2+6x+1\right)=x\left(3x+1\right)^2\\ f,x^4+5x^3+15x-9=\left(x^4+5x^3-3x^2\right)+\left(3x^2+15x-9\right)=x^2\left(x^2+5x-3\right)+3\left(x^2+5x-3\right)=\left(x^2+3\right)\left(x^2+5x-3\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a/ 36x2 - 12x + 1
b/ 5x3y + 10x2y + 5xy
c/ 9x2 – 6xy + y2 – 25
d/ x2 + 8x + 7
a) \(=\left(6x\right)^2-2.6x.1+1=\left(6x-1\right)^2\)
b) \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)
c) \(=\left(3x-y\right)^2-25=\left(3x-y-5\right)\left(3x-y+5\right)\)
d) \(=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
Câu 1: Phân tích đa thức thành nhân tử:
a). 5xy2 + 10x2y. b). x2 - 9 - 2xy - y2. c). x3 - 8 + 2x(x - 2).
Câu 2: Tìm x, biết:
a). (x - 1)(x + 1) - x(x + 3) + 7 = 0. b). 2x3 - 22x2 + 36x = 0.
Câu 3: Cho biểu thức A = + \(\dfrac{1}{x+2}\) - \(\dfrac{1}{x-2}\) (x ≠ 2; x ≠ -2).
a). Rút gọn biểu thức A.
b). Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
Câu 4:
1). Sân bóng tại Trung tâm thể thao quận Tây Hồ là 1 hình chữ nhật có chiều dài 105m, chiều rộng 68m. Ban quản lý muốn thay cỏ mới cho sân. Tính số tiền ban quản lý phải trả để mua cỏ ? biết mỗi mét vuông cỏ có giá 120 000 đồng.
2). Cho ΔABC vuông tại A (AB < AC), đương cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng với A qua M.
a). Chứng minh tứ giác ABDC là hình chữ nhật.
b). Trên tia đối của tia HA lấy điểm E sao cho HA = HE. Chứng minh DB là phân giác góc ADE.
c). Gọi I, K lần lượt là hình chiếu của E lên BD và CD. Chứng minh 3 điểm H, I, K thẳng hàng.
Câu 2:
a: \(\left(x-1\right)\left(x+1\right)-x\left(x+3\right)+7=0\)
=>\(x^2-1-x^2-3x+7=0\)
=>-3x+6=0
=>-3x=-6
=>\(x=\dfrac{-6}{-3}=2\)
b: \(2x^3-22x^2+36x=0\)
=>\(2x\left(x^2-11x+18\right)=0\)
=>\(x\left(x^2-11x+18\right)=0\)
=>\(x\left(x^2-2x-9x+18\right)=0\)
=>\(x\left[x\left(x-2\right)-9\left(x-2\right)\right]=0\)
=>\(x\left(x-2\right)\left(x-9\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x-2=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=9\end{matrix}\right.\)
Câu 4:
1: Diện tích cỏ cần thay là:
\(105\cdot68=7140\left(m^2\right)\)
Số tiền BQL sân cần trả là:
\(7140\cdot120000=856800000\left(đồng\right)\)
2:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔADE có
H,M lần lượt là trung điểm của AE,AD
=>HM là đường trung bình của ΔADE
=>HM//DE
=>BC//DE
=>\(\widehat{EDB}=\widehat{DBM}\)(hai góc so le trong)(1)
Ta có: ABDC là hình chữ nhật
=>AD=BC
mà \(MD=\dfrac{AD}{2};MB=\dfrac{BC}{2}\)
nên MD=MB
=>ΔMBD cân tại M
=>\(\widehat{MDB}=\widehat{MBD}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MDB}=\widehat{EDB}\)
=>\(\widehat{ADB}=\widehat{EDB}\)
=>DB là phân giác của góc ADE
Phân tích đa thức thành nhân tử
a) 7x – 14
b) 5x3 - 10x2y +5xy2
c) 25 – x2
a) 7x – 14 = 7(x - 2)
b) 5x3 - 10x2y +5xy2 = 5x(x2 - 2xy - y2) = 5x(x - y)2
c) 25 – x2= (x - 5)(x + 5)
a, \(7\left(x-2\right)\)
c, \(\left(5-x\right)\left(5+x\right)\)
\(a,7x-14=7\left(x-2\right)\\ b.5x^3-10x^2y+5xy^2=5x\left(x^2-2xy+y^2\right)=5x\left(x-y\right)^2\\ c,25-x^2=\left(5-x\right)\left(5+x\right)\)
Phân tích đa thức thành nhân tử
a) 7x – 14
b) 5x3 - 10x2y +5xy2
c) 25 – x2
a, 7x - 14 = 7 ( x - 2 )
b, 5x3 - 10x2y + 5xy2
= 5x ( x2 - 2xy + y2 )
= 5x ( x - y )2
c, 25 - x2 = 52 - x2 = ( 5 - x ) ( 5 + x )
Phân tích đa thức thành nhân tử:
a)10x2y-5xy2+15xyz
b)x3-x2-4x+4
c)x3-6x2+9x
\(a,=5xy\left(2x-y+3z\right)\\ b,=x^2\left(x-1\right)-4\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\\ c,=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
phân tích đa thức
25x2 – 10x2y + y2
Câu 14: Kết quả phân tích đa thức 5x3 - 10x2y + 5xy2 thành nhân tử là:
A. 5x(x – y)2 B. x(5x – y)2 C. -5x(x + y)2 D. x(x + 5y)2
Câu 15: Rút gọn phân thức:\(\dfrac{15x\left(3-y\right)}{45x\left(y-3\right)}\)ta được kết quả là:
A. 3 B. -3x C.\(\dfrac{1}{3x}\) D.\(\dfrac{-1}{3}\)