tinh: \(\left(-2\right)^2-1\dfrac{5}{27}.\left(-\dfrac{3}{2}\right)^3\)
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
Tinh:
\(A=\dfrac{(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}).203\dfrac{1}{25}+46\dfrac{3}{4}}{(1\dfrac{3}{7}+\dfrac{10}{3}):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(B=\dfrac{\left(81,624:4,8-4.505\right)^2+125.0,75}{\left\{\left[\left(0,44\right)^2:0,88+3,53\right]^2-\left(2,75\right)^2\right\}:0,52}\)
\(x^2-19=5.9;\left(2x+1\right)^3=-0,001;\left(\dfrac{5}{6}\right)^{2x-1}=\left(\dfrac{5}{6}\right)^5;\left(\dfrac{1}{3}x-\dfrac{2}{3}\right)^3=27;\left(\dfrac{1}{32}\right)^x=\left(\dfrac{1}{2}\right)^{15}\)
a, \(x^2\) - 19 = 5.9
\(x^2\) - 19 = 45
\(x^2\) = 45 + 19
\(x^2\) = 64
\(x^2\) = 82
\(x\) = 8
b, (2\(x\) + 1)3 = -0,001
(2\(x\) + 1)3 = (-0,1)3
2\(x\) + 1 = -0,1
2\(x\) = -0,1 - 1
2\(x\) = - 1,1
\(x\) = -1,1: 2
\(x\) = - 0,55
\(x^2-19=5\cdot9\\\Rightarrow x^2-19=45\\\Rightarrow x^2=45+19\\\Rightarrow x^2=64\\\Rightarrow x^2=(\pm8)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
\(---\)
\((2x+1)^3=-0,001\\\Rightarrow (2x+1)^3=(-0,1)^3\\\Rightarrow2x+1=-0,1\\\Rightarrow2x=-0,1-1\\\Rightarrow2x=-1,1\\\Rightarrow x=-1,1:2\\\Rightarrow x=\dfrac{-11}{20}\\---\)
\(\bigg(\dfrac56\bigg)^{2x-1}=\bigg(\dfrac56\bigg)^5\\\Rightarrow 2x-1=5\\\Rightarrow2x=5+1\\\Rightarrow2x=6\\\Rightarrow x=6:2\\\Rightarrow x=3\\---\)
\(\bigg(\dfrac13x-\dfrac23\bigg)^3=27\\\Rightarrow\bigg(\dfrac13x-\dfrac23\bigg)^3=3^3\\\Rightarrow\dfrac13x-\dfrac23=3\\\Rightarrow\dfrac13x=3+\dfrac23\\\Rightarrow\dfrac13x=\dfrac{11}{3}\\\Rightarrow x=\dfrac{11}{3}:\dfrac13\\\Rightarrow x=11\\---\)
\(\bigg(\dfrac{1}{32}\bigg)^x=\bigg(\dfrac12\bigg)^{15}\\\Rightarrow\bigg(\dfrac{1}{32}\bigg)^x=\bigg[\bigg(\dfrac{1}{2}\bigg)^5\bigg]^3\\\Rightarrow\bigg(\dfrac{1}{32}\bigg)^x=\bigg(\dfrac{1^5}{2^5}\bigg)^3\\\Rightarrow\bigg(\dfrac{1}{32}\bigg)^x=\bigg(\dfrac{1}{32}\bigg)^3\\\Rightarrow x=3\\Toru\)
Bài 1:
a,\(3^7\) : \(3^5\)- \(\left(\dfrac{5}{17}\right)^0\) b,\(\left(\dfrac{5}{2}\right)^{13}\) : \(\left(\dfrac{1}{2}+2\right)^3\) c, 8.\(\left(\dfrac{1}{4}\right)^3\) +\(\left(\dfrac{2}{27}\right)^0\) - \(\dfrac{1}{8}\)
Bài 2 :
a, \(\dfrac{3^4.4^4}{6^4}\) b,\(\dfrac{15^3}{10^3}\) c, \(\dfrac{4^2.12^5}{9^2.2^{10}}\) d, \(\dfrac{6^2+5.2^2+4}{15}\)
Bài 3 :
a, \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^2}\) b,\(\dfrac{6^6+6^3.3^3+3^6}{-73}\)
Mọi người giúp mình nhé mình sẽ cho bạn 1 like
Bài 1:
a) \(3^7:3^5-\left(\dfrac{5}{17}\right)^0=3^{7-5}-1=3^2-1=9-1=8\)
b) \(\left(\dfrac{5}{2}\right)^{13}:\left(\dfrac{1}{2}+2\right)^3\)
\(=\left(\dfrac{5}{2}\right)^{13}:\left(\dfrac{5}{2}\right)^3\)
\(=\left(\dfrac{5}{2}\right)^{10}\)
c) \(8.\left(\dfrac{1}{4}\right)^3+\left(\dfrac{2}{27}\right)^0-\dfrac{1}{8}\)
\(=8.\dfrac{1}{64}+1-\dfrac{1}{8}\)
\(=\dfrac{1}{8}+1-\dfrac{1}{8}\)
\(=1\)
Bài 2:
a) \(\dfrac{3^4.4^4}{6^4}=\dfrac{3^4.\left(2^2\right)^4}{\left(2.3\right)^4}=\dfrac{3^4.2^8}{2^4.3^4}=\dfrac{2^8}{2^4}=2^4=16\)
b) \(\dfrac{15^3}{10^3}=\dfrac{\left(3.5\right)^3}{ \left(2.5\right)^3}=\dfrac{3^3.5^3}{2^3.5^3}=3^3:2^3=\dfrac{27}{8}\)
c) \(\dfrac{4^2.12^5}{9^2.2^{10}}=\dfrac{\left(2^2\right)^2.\left[3.\left(2^2\right)\right]^5}{\left(3^2\right)^2.2^{10}}=\dfrac{2^4.3^5.2^{10}}{3^4.2^{10}}=2^4.3=16.3=48\)
d) \(\dfrac{6^2+5.2^2+4}{15}=\dfrac{\left(2.3\right)^2+5.2^2+2^2}{15}=\dfrac{2^2.3^2+5.2^2+2^2}{15}=\dfrac{2^2\left(3^2+5+1\right)}{15}=\dfrac{2^2.15}{15}=2^2=4\)
Bài 3:
a) \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^2}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.-1}{\left[\dfrac{2}{5}.\left(\dfrac{-5}{12}\right)\right]^2}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3. \left(\dfrac{-3}{4}\right)^2.-1}{\left(\dfrac{-1}{6}\right)^2}\)
\(=\left(\dfrac{2}{3}\right)^3.\left[\left(\dfrac{-3}{4}\right).-6\right]^2.-1\)
\(=\left(\dfrac{2}{3}\right)^3.\left(\dfrac{9}{2}\right)^2.-1\)
\(=\left(\dfrac{2}{3}\right)^2.\dfrac{2}{3}.\left(\dfrac{9}{2}\right)^2.-1\)
\(=\left(\dfrac{2}{3}.\dfrac{9}{2}\right)^2.\dfrac{2}{3}.-1\)
\(=9.\dfrac{2}{3}.-1\)
\(=6.-1=-6\)
b) \(\dfrac{6^6+6^3.3^3+3^6}{-73}=\dfrac{\left(2.3\right)^6+\left(2.3\right)^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^6+3^6}{-73}=\dfrac{3^6\left(2^6+2^3+1\right)}{-73}=\dfrac{3^6.73}{-73}=\dfrac{3^6}{-1}=\left(-3\right)^6\)
\(#Wendy.Dang\)
Lần sau bnn gửi từng bài thôi nha, chứ như vầy nhiều quá thì làm không nổi mất. đánh máy nãy giờ lú luôn gòi nè :))
Võ Ngọc Phương
Bài 3b, kết quả -(3)6 = - 729 em nhá chứ không phải (-3)6
\(\left(\dfrac{-2}{3}\right)^2.x=\left(\dfrac{-2}{3}\right)^5\)
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}\)
\(\left(\dfrac{2}{3}x-1\right)\left(\dfrac{3}{4}x+\dfrac{1}{2}\right)=0\)
\(\dfrac{4}{9}:x=3\dfrac{1}{3}:2,25\)
\(1\dfrac{1}{3}:0,8=\dfrac{2}{3}:0,1x\)
a: \(x=\left(-\dfrac{2}{3}\right)^5:\left(-\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)
b: =>x-1/2=1/3
=>x=5/6
c: =>2/3x-1=0 hoặc 3/4x+1/2=0
=>x=3/2 hoặc x=-1/2:3/4=-1/2*4/3=-4/6=-2/3
d =>4/9:x=10/3:9/4=10/3*4/9=40/27
=>x=4/9:40/27=4/9*27/40=108/360=3/10
\(5\dfrac{5}{27}+\dfrac{7}{23}-0,5.\dfrac{5}{27}+\dfrac{16}{23}=\)
\(45\dfrac{1}{6}:\left(\dfrac{-4}{5}\right)-35\dfrac{1}{6}:\left(\dfrac{-4}{5}\right)=\)
\(25.\left(\dfrac{-1}{5}\right)^3+\dfrac{1}{5}-2.\left(\dfrac{-1}{2}\right)^2-\dfrac{1}{2}=\)
\(\left(3,1-2,5\right)-\left(-2,5-3,1\right)=\)
\(\dfrac{3}{8}.\dfrac{7}{5}-\dfrac{7}{5}.\dfrac{1}{8}+\dfrac{13}{20}=\)
CẦN GẤP NGAY VÀ LUÔN :)))))
tính giá trị biểu thức sau
a) \(A=3^{\dfrac{2}{5}}.3^{\dfrac{1}{5}}.3^{\dfrac{1}{5}}\)
b) \(B=\left(-27\right)^{\dfrac{1}{3}}\)
c) \(C=\sqrt[3]{-64}.\left(\dfrac{1}{2}\right)^3\)
d) \(D=\left(-27\right)^{\dfrac{1}{3}}.\left(\dfrac{1}{3}\right)^4\)
e) \(E=\left(\sqrt{3}+1\right)^{106}.\left(\sqrt{3}-1\right)^{106}\)
f) \(F=360^{\sqrt{5}+1}.20^{3-\sqrt{5}}.18^{3-\sqrt{5}}\)
g) \(G=2023^{\left(3+2\sqrt{2}\right)}.2023^{\left(2\sqrt{2}-3\right)}\)
a: \(A=3^{\dfrac{2}{5}}\cdot3^{\dfrac{1}{5}}\cdot3^{\dfrac{1}{5}}=3^{\dfrac{2}{5}+\dfrac{1}{5}+\dfrac{1}{5}}=3^{\dfrac{4}{5}}\)
b: \(B=\left(-27\right)^{\dfrac{1}{3}}=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}=\left(-3\right)^{\dfrac{1}{3}\cdot3}=\left(-3\right)^1=-3\)
c: \(C=\sqrt[3]{-64}\cdot\left(\dfrac{1}{2}\right)^3\)
\(=\sqrt[3]{\left(-4\right)^3}\cdot\dfrac{1}{2^3}=-4\cdot\dfrac{1}{8}=-\dfrac{4}{8}=-\dfrac{1}{2}\)
d: \(D=\left(-27\right)^{\dfrac{1}{3}}\cdot\left(\dfrac{1}{3}\right)^4\)
\(=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}\cdot\dfrac{1}{3^4}\)
\(=\left(-3\right)^{3\cdot\dfrac{1}{3}}\cdot\dfrac{1}{81}=\dfrac{-3}{81}=\dfrac{-1}{27}\)
e: \(E=\left(\sqrt{3}+1\right)^{106}\cdot\left(\sqrt{3}-1\right)^{106}\)
\(=\left[\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\right]^{106}\)
\(=\left(3-1\right)^{106}=2^{106}\)
f: \(F=360^{\sqrt{5}+1}\cdot20^{3-\sqrt{5}}\cdot18^{3-\sqrt{5}}\)
\(=360^{\sqrt{5}+1}\cdot\left(20\cdot18\right)^{3-\sqrt{5}}\)
\(=360^{\sqrt{5}+1}\cdot360^{3-\sqrt{5}}=360^{\sqrt{5}+1+3-\sqrt{5}}=360^4\)
g: \(G=2023^{3+2\sqrt{2}}\cdot2023^{2\sqrt{2}-3}\)
\(=2023^{3+2\sqrt{2}+2\sqrt{2}-3}\)
\(=2023^{4\sqrt{2}}\)
1 tinh
a,\(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
b,4.\(\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
c,\(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
d,\(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)
\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)
\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)
\(=5\dfrac{4}{23}.23\)
\(=\dfrac{119}{23}.23\)
\(=\dfrac{119}{23}\)
b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{3}{2}\)
\(=\dfrac{-2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{9}{6}\)
\(=\dfrac{5}{6}\)
c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)
\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)
\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)
\(=1-1\)
\(=0\)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
(đợi đã, mình chưa tìm được hướng làm...)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
\(=\left(\dfrac{-60}{132}+\dfrac{42}{132}-\dfrac{-16}{132}-\dfrac{15}{132}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
\(=\dfrac{-17}{132}:\left(\dfrac{381}{22}-\dfrac{865}{22}\right)\)
\(=\dfrac{-17}{132}:\left(-22\right)\)
\(=\dfrac{-17}{132}.\dfrac{1}{-22}\)
\(=\dfrac{-17}{-2904}=\dfrac{17}{2904}\)
1. \(\left(y+\dfrac{1}{3}\right)\)+\(\left(y+\dfrac{1}{9}\right)\)+\(\left(y+\dfrac{1}{27}\right)\)+\(\left(y+\dfrac{1}{81}\right)\)=\(\dfrac{56}{81}\)
2. 18:\(\dfrac{Xx0,4+0,32}{X}\)+5=14
3. \(\dfrac{3xX}{2}\)=\(\dfrac{2}{5}+\)X\(+\dfrac{1}{3}\)
4. X-\(\dfrac{11}{15}\)=\(\dfrac{3+X}{5}\)
Bài 1:
$(y+\frac{1}{3})+(y+\frac{1}{9})+(y+\frac{1}{27})+(y+\frac{1}{81})=\frac{56}{81}$
$(y+y+y+y)+(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81})=\frac{56}{81}$
$4\times y+\frac{40}{81}=\frac{56}{81}$
$4\times y=\frac{56}{81}-\frac{40}{81}=\frac{16}{81}$
$y=\frac{16}{81}:4=\frac{4}{81}$
Bài 2:
$18: \frac{x\times 0,4+0,32}{x}+5=14$
$18: \frac{x\times 0,4+0,32}{x}=14-5=9$
$\frac{x\times 0,4+0,32}{x}=18:9=2$
$x\times 0,4+0,32=2\times x$
$2\times x-x\times 0,4=0,32$
$x\times (2-0,4)=0,32$
$x\times 1,6=0,32$
$x=0,32:1,6=0,2$
Bài 3:
$\frac{3\times x}{2}=\frac{2}{5}+x+\frac{1}{3}$
$1,5\times x=x+\frac{11}{15}$
$1,5\times x-x=\frac{11}{15}$
$x\times (1,5-1)=\frac{11}{15}$
$x\times 0,5=\frac{11}{15}$
$x=\frac{11}{15}: 0,5=\frac{22}{15}$