Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nguyễn Hiếu Thảo
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
nthv_.
17 tháng 9 2021 lúc 22:07

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

Nguyễn Lê Phước Thịnh
17 tháng 9 2021 lúc 22:07

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

Nguyễn Thanh Hằng
17 tháng 9 2021 lúc 22:11

a/ \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\sqrt{\left(4-x\right)^2}=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\left|4-x\right|=4-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\le4\\\left[{}\begin{matrix}4-x=4-x\left(loại\right)\\4-x=x-4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=4\)

Vậy...

b/ \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\sqrt{\left(2x-3\right)^2}=2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}2x-3=2x-3\left(loại\right)\\2x-3=3-2x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy...

 

Phúc Nguyễn
Xem chi tiết
Chi Lê Vân
20 tháng 10 2017 lúc 21:16

X=0,894427185

Chi Lê Vân
20 tháng 10 2017 lúc 21:30

tớ bấm máy tính mà

Chi Lê Vân
20 tháng 10 2017 lúc 21:31

thui để tí tui gửi cho đang bận

Lê Đăng Phú Quý
Xem chi tiết
tran duc huy
Xem chi tiết
Nguyễn Thị Ngọc Thơ
4 tháng 12 2019 lúc 20:05

1.

ĐK: \(-1\le x\le4\)

Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)

\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)

\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)

2.

ĐK:\(x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)

\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)

\(PT\Leftrightarrow t=2x-12+t^2-2x\)

\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.

Khách vãng lai đã xóa
Dương Thị Thu Hiền
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 17:41

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

Bùi Đức Anh
Xem chi tiết
Trần Minh Hoàng
31 tháng 12 2020 lúc 22:49

ĐKXĐ: \(-1\le x\le1\).

Đặt \(x^2=a\left(0\le a\le1\right)\).

PT đã cho được viết lại thành:

\(13\sqrt{a-a^2}+9\sqrt{a+a^2}=16\).

Áp dụng bất đẳng thức AM - GM cho hai số thực không âm ta có:

\(a+4\left(1-a\right)\ge2\sqrt{a.4\left(1-a\right)}\)

\(\Rightarrow\sqrt{a-a^2}\le1-\dfrac{3}{4}a\)

\(\Rightarrow13\sqrt{a-a^2}\le13-\dfrac{39}{4}a\); (1)

\(a+\dfrac{4}{9}\left(a+1\right)\ge2\sqrt{a.\dfrac{4}{9}\left(a+1\right)}\)

\(\Rightarrow\sqrt{a\left(a+1\right)}\le\dfrac{13}{12}a+\dfrac{1}{3}\)

\(\Rightarrow9\sqrt{a+a^2}\le\dfrac{39a}{4}+3\). (2)

Cộng vế với vế của (1), (2) ta có \(13\sqrt{a-a^2}+9\sqrt{a+a^2}\le16\).

Mặt khác từ pt đã cho ta có đẳng thức phải xảy ra.

Do đó đẳng thức ở (1) và (2) cũng xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}a=4\left(1-a\right)\\a=\dfrac{2}{3}\left(1+a\right)\end{matrix}\right.\Leftrightarrow a=\dfrac{4}{5}\Leftrightarrow x=\pm\sqrt{\dfrac{4}{5}}\) (TMĐK).

Vậy...

 

 

Huy Trần
Xem chi tiết
Nguyễn Ngọc Huy Toàn
30 tháng 5 2022 lúc 15:51

\(ĐK:x\in R\)

\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\) (*)

Đặt \(x^2+x+1=a;a\ge0\)

\(\rightarrow\left\{{}\begin{matrix}x^2+x+4=a+3\\2x^2+2x+9=2a+7\end{matrix}\right.\)

(*) \(\Rightarrow\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)

\(\Leftrightarrow\left(\sqrt{a+3}+\sqrt{a}\right)^2=\left(\sqrt{2a+7}\right)^2\)

\(\Leftrightarrow a+3+a+2\sqrt{a\left(a+3\right)}=2a+7\)

\(\Leftrightarrow2\sqrt{a\left(a+3\right)}=4\)

\(\Leftrightarrow\sqrt{a\left(a+3\right)}=2\)

\(\Leftrightarrow a\left(a+3\right)=4\)

\(\Leftrightarrow a^2+3a-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) \((tm)\)

Vậy \(S=\left\{0;-1\right\}\)

 

 

Nguyễn Minh Tài
Xem chi tiết