tính
\(\sqrt{1\dfrac{24}{25}.5\dfrac{1}{16}.0,01}\)
a/ 5 .\(\sqrt{0,01}\) - \(\sqrt{0,25}\)
b/ 15\(\dfrac{1}{4}\) : (-\(\dfrac{5}{7}\)) - 25\(\dfrac{1}{4}\) : (-\(\dfrac{5}{7}\))
c/ \(\dfrac{5^4\cdot20^4}{25^4\cdot4^5}\)
a, =2.0,1-0,5 b,=\(\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right):\left(-\dfrac{5}{7}\right)\)
=0,2-0,5 = -10:(\(\dfrac{-5}{7}\))
=-0,3 = 14
c, \(=\dfrac{5^4.\left(4.5\right)^4}{\left(5^2\right)^4.4^5}=\dfrac{5^4.4^4.5^4}{5^8.4^5}=\dfrac{1}{4^{ }}\)
1) \(\left(\dfrac{1}{3}\right)^{50}.90^{25}-\dfrac{2}{3}:4\)
2) \(10.\sqrt{0,01}.\sqrt{\dfrac{16}{9}}+\sqrt{49}-\dfrac{1}{6}.\sqrt{4}\)
1: \(=\left(\dfrac{1}{3}\right)^{25}\cdot90^{25}\cdot\dfrac{1}{3^{25}}-\dfrac{2}{12}\)
\(=\dfrac{30^{25}}{3^{25}}-\dfrac{1}{6}=10^{25}-\dfrac{1}{6}\)
2: \(=10\cdot1\cdot\dfrac{4}{3}+7-\dfrac{1}{6}\cdot2=20\)
THỰC HIỆN PHÉP TÍNH
1,\(\sqrt{1\dfrac{9}{16}}\)
2,\(\dfrac{\sqrt{12,5}}{0,5}\)
3,\(\sqrt{\dfrac{25}{64}}\)
4,\(\dfrac{\sqrt{230}}{\sqrt{2,3}}\)
5,\((\sqrt{\dfrac{2}{3}}+\sqrt{\dfrac{50}{3}}-\sqrt{24}).\sqrt{6}\)
1) \(\sqrt{1\dfrac{9}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{5}{4}\)
2) \(\dfrac{\sqrt{12.5}}{0.5}=\sqrt{\dfrac{12.5}{0.25}}=5\sqrt{2}\)
3) \(\sqrt{\dfrac{25}{64}}=\dfrac{5}{8}\)
4) \(\dfrac{\sqrt{230}}{\sqrt{2.3}}=\sqrt{\dfrac{230}{2.3}}=\sqrt{100}=10\)
5) \(\left(\sqrt{\dfrac{2}{3}}+\sqrt{\dfrac{50}{3}}-\sqrt{24}\right)\cdot\sqrt{6}\)
\(=\left(\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{5\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)
\(=\left(\dfrac{6\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)
\(=0\cdot\sqrt{6}=0\)
bài 1: tính
a) 3/4+(-5/2)+(-3/5)
b) \(\sqrt{\left(7\right)^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}\)
c)\(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}\)
a)\(\dfrac{3}{4}-\dfrac{5}{2}-\dfrac{3}{5}=\dfrac{15}{20}-\dfrac{50}{20}-\dfrac{12}{20}=-\dfrac{47}{20}\)
b) \(\sqrt{7^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}=7+\sqrt{\dfrac{1}{16}}=7+\dfrac{1}{4}=\dfrac{29}{4}\)
c) \(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}=\dfrac{1}{2}.10-\sqrt{\dfrac{1}{16}+1}=5-\sqrt{\dfrac{17}{16}}\)
Tính:
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\)
\(M=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{25\sqrt{24}+24\sqrt{25}}\\ =\dfrac{1}{\sqrt{2}\left(\sqrt{2}+1\right)}+\dfrac{1}{\sqrt{2.3}\left(\sqrt{3}+\sqrt{2}\right)}+....+\dfrac{1}{\sqrt{24.25}\left(\sqrt{25}+\sqrt{24}\right)}\\ =\dfrac{\sqrt{2}-1}{\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{2}.\sqrt{3}}+...+\dfrac{\sqrt{25}-\sqrt{24}}{\sqrt{25}.\sqrt{24}}\\ =1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\\ =1-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\)
=1-1/5=4/5
Với `n` làm cho biểu thức dưới đây có nghĩa, ta có:
`1/((n+1)sqrtn+nsqrt(n+1))=1/(sqrtn sqrt(n+1)(sqrt(n+1)+sqrt(n)))=(sqrt(n+1)-sqrt(n))/(sqrtn sqrt(n+1))=1/(sqrtn)-1/(sqrtn+1)`
Khi đó:
`M=\sum_{n=1}^(24)=1/((n+1)sqrtn+nsqrt(n+1))=1/(sqrtn)-1/(sqrtn+1)=1/(sqrt1)-1/(sqrt25)=1-1/5=4/5`
Bài 1 : Tính giá trị biểu thức :
1/ 0,2.\(\sqrt{100}\) -\(\sqrt{\dfrac{16}{25}}\)
2/ \(\dfrac{2^7.9^{3^{ }}}{6^5.8^2}\)
3/\(\sqrt{0,01}\) - \(\sqrt{0,25}\)
4/ 0,5 . \(\sqrt{100}\) - \(\sqrt{\dfrac{1}{4}}\)
5/ 7. \(\sqrt{0,01}\) + 2.\(\sqrt{0,25}\)
6/ 0,5.\(\sqrt{100}\) - \(\sqrt{\dfrac{1}{25}}\)
1.
0,2 . \(\sqrt{100}\) - \(\sqrt{\dfrac{16}{25}}\)
= 0,2 . 10 - \(\dfrac{4}{5}\)
= 2 - \(\dfrac{4}{5}\)
= \(\dfrac{6}{5}\)
1/ \(0,2.\sqrt{100}-\sqrt{\dfrac{16}{25}}\)
\(=0,2.10-0,8\)
\(=2-0,8=1,2\)
2/ \(\dfrac{2^7.9^3}{6^5.8^2}\)
\(=\dfrac{93312}{497664}=\dfrac{3}{16}=0,1875\)
3/ \(\sqrt{0,01}-\sqrt{0,25}\)
\(=0,1-0,5\)
\(=-0,4\)
4/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)
\(=0,5.10-0,5\)
\(=5-0,5=4,5\)
5/ \(7.\sqrt{0,01}+2.\sqrt{0,25}\)
\(=7.0,1+2.0,5\)
\(=0,7+1=1,7\)
6/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{25}}\)
\(=0,5.10-0,2\)
\(=5-0,2=4,8\)
S=\(\dfrac{\sqrt{2}-1}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+...+\dfrac{\sqrt{25}-\sqrt{24}}{24+25}< \dfrac{2}{5}\)
Xét :\(\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\dfrac{\sqrt{n+1}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Do đó :
S\(< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\right)\)\(=\dfrac{1}{2}\left(1-\dfrac{1}{5}\right)=\dfrac{2}{5}\)(dpcm)
a) \(\dfrac{2}{5}\sqrt{25}\) -\(\dfrac{1}{2}\sqrt{4}\) b)0,5\(\sqrt{0,09}\) +5\(\sqrt{0,81}\) c)\(\dfrac{2}{5}\sqrt{\dfrac{25}{36}}\) -\(\dfrac{5}{2}\sqrt{\dfrac{4}{25}}\)
d)-2\(\sqrt{\dfrac{-36}{-16}}\) + 5\(\sqrt{\dfrac{-81}{-25}}\)
`#3107.101107`
a)
`2/5 \sqrt{25} - 1/2 \sqrt{4}`
`= 2/5 * \sqrt{5^2} - 1/2 * \sqrt{2^2}`
`= 2/5*5 - 1/2*2`
`= 2 - 1`
`= 1`
b)
`0,5*\sqrt{0,09} + 5*\sqrt{0,81}`
`= 0,5*\sqrt{(0,3)^2} + 5*\sqrt{(0,9)^2}`
`= 0,5*0,3 + 5*0,9`
`= 0,15 + 4,5`
`= 4,65`
c)
`2/5\sqrt{25/36} - 5/2\sqrt{4/25}`
`= 2/5*\sqrt{(5^2)/(6^2)} - 5/2*\sqrt{(2^2)/(5^2)}`
`= 2/5*5/6 - 5/2*2/5`
`= 1/3 - 1`
`= -2/3`
d)
`-2 \sqrt{(-36)/(-16)} + 5 \sqrt{(-81)/(-25)}`
`= -2*\sqrt{36/16} + 5*\sqrt{81/25}`
`= -2*\sqrt{(6^2)/(4^2)} + 5*\sqrt{(9^2)/(5^2)}`
`= -2*6/4 + 5*9/5`
`= -3 + 9`
`= 6`
\(\dfrac{1}{\sqrt{5}-\sqrt{3}+2}\)
A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}\sqrt{3}}+...+\dfrac{1}{\sqrt[]{24}\sqrt{25}}\)
a: \(\dfrac{1}{\sqrt{5}-\sqrt{3}+2}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-2}{\left(\sqrt{5}-\sqrt{3}\right)^2-4}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-2}{8-2\sqrt{15}-4}=\dfrac{\sqrt{5}-\sqrt{3}-2}{4-2\sqrt{15}}\)
\(=\dfrac{\left(\sqrt{5}-\sqrt{3}-2\right)\left(4+2\sqrt{15}\right)}{16-60}\)
\(=\dfrac{4\sqrt{5}+2\cdot\sqrt{75}-4\sqrt{3}-2\sqrt{45}-8-4\sqrt{15}}{-44}\)
\(=\dfrac{-2\sqrt{5}+6\sqrt{3}-8-4\sqrt{15}}{-44}\)
\(=\dfrac{\sqrt{5}-3\sqrt{3}+4+2\sqrt{15}}{22}\)
b: Sửa đề: \(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{24}+\sqrt{25}}\)
\(=\dfrac{-1+\sqrt{2}}{2-1}+\dfrac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\dfrac{-\sqrt{24}+\sqrt{25}}{25-24}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}+...+\left(-\sqrt{24}\right)+\sqrt{25}\)
=5-1
=4