a: \(\dfrac{1}{\sqrt{5}-\sqrt{3}+2}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-2}{\left(\sqrt{5}-\sqrt{3}\right)^2-4}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-2}{8-2\sqrt{15}-4}=\dfrac{\sqrt{5}-\sqrt{3}-2}{4-2\sqrt{15}}\)
\(=\dfrac{\left(\sqrt{5}-\sqrt{3}-2\right)\left(4+2\sqrt{15}\right)}{16-60}\)
\(=\dfrac{4\sqrt{5}+2\cdot\sqrt{75}-4\sqrt{3}-2\sqrt{45}-8-4\sqrt{15}}{-44}\)
\(=\dfrac{-2\sqrt{5}+6\sqrt{3}-8-4\sqrt{15}}{-44}\)
\(=\dfrac{\sqrt{5}-3\sqrt{3}+4+2\sqrt{15}}{22}\)
b: Sửa đề: \(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{24}+\sqrt{25}}\)
\(=\dfrac{-1+\sqrt{2}}{2-1}+\dfrac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\dfrac{-\sqrt{24}+\sqrt{25}}{25-24}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}+...+\left(-\sqrt{24}\right)+\sqrt{25}\)
=5-1
=4