Tính tổng sau:
A=\(\dfrac{20}{1.6}+\dfrac{20}{6.11}+........+\dfrac{20}{51.56}+\dfrac{20}{56.61}\)
Tính
\(A=\frac{20}{1.6}+\frac{20}{6.11}+.....+\frac{20}{51.56}+\frac{20}{56.61}\)
\(A=\frac{20}{1\cdot6}+\frac{20}{6\cdot11}+...+\frac{20}{51\cdot56}+\frac{20}{56\cdot61}\)
\(A=\frac{20}{5}\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{51}-\frac{1}{56}+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=4\cdot\left(1-\frac{1}{61}\right)\)
\(A=4\cdot\frac{60}{61}\)
\(A=\frac{240}{61}\)
\(A=\frac{20}{1.6}+\frac{20}{6.11}+...+\frac{20}{51.56}+\frac{20}{56.61}\)
\(A=\frac{20}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{51}-\frac{1}{56}+\frac{1}{56}-\frac{1}{61}\right)\)
\(A=4.\left(1-\frac{1}{61}\right)\)
\(A=4.\frac{60}{61}=\frac{240}{61}\)
Thực hiện phép tính sau:
M=\(\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)
Tính tổng
A=\(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}+\dfrac{1}{156}+\dfrac{1}{182}+\dfrac{1}{210}\)
Bài 1: Ta có:
\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)
\(=\dfrac{20}{8.14}+\dfrac{20}{14.20}+\dfrac{20}{20.26}+\dfrac{20}{26.32}\)
\(=\dfrac{20}{6}\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+\dfrac{6}{26.32}\right)\)
\(=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+...+\dfrac{1}{26}-\dfrac{1}{32}\right)\)
\(=\dfrac{20}{6}\left(\dfrac{1}{8}-\dfrac{1}{32}\right)=\dfrac{20}{6}.\dfrac{3}{32}=\dfrac{5}{16}\)
Vậy \(M=\dfrac{5}{16}\)
Bài 2: Ta có:
\(A=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{210}\)
\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{14.15}\)
\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{6}-\dfrac{1}{15}=\dfrac{1}{10}\)
Vậy \(A=\dfrac{1}{10}\)
Giải:
\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}.\)
\(M=\dfrac{5}{28}+\dfrac{5}{70}+\dfrac{5}{130}+\dfrac{5}{208}.\)
\(M=\dfrac{5}{4.7}+\dfrac{5}{7.10}+\dfrac{5}{10.13}+\dfrac{5}{13.16}.\)
\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right).\)
\(M=\dfrac{5}{3}\left[\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+\left(\dfrac{1}{10}-\dfrac{1}{10}\right)+\left(\dfrac{1}{13}-\dfrac{1}{13}\right)+\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\right].\)
\(M=\dfrac{5}{3}\left[0+0+0+\left(\dfrac{1}{4}-\dfrac{1}{16}\right).\right]\)
\(M=\dfrac{5}{3}\left(\dfrac{1}{4}-\dfrac{1}{16}\right).\)
\(M=\dfrac{5}{3}\left(\dfrac{4}{16}-\dfrac{1}{16}\right).\)
\(M=\dfrac{5}{3}.\dfrac{3}{16}.\)
\(M=\dfrac{15}{48}=\dfrac{5}{16}.\)
M=\(\dfrac{5}{28}+\dfrac{1}{14}+\dfrac{1}{26}+\dfrac{5}{208}\)
M=\((\dfrac{5}{28}+\dfrac{1}{14})+\left(\dfrac{1}{26}+\dfrac{5}{208}\right)\)
M=\(\dfrac{1}{4}+\dfrac{1}{16}\)
M=\(\dfrac{5}{16}\)
A=\(\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+...+\dfrac{1}{13\times14}+\dfrac{1}{14\times15}\)
A=\(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{14}-\dfrac{1}{15}\)
Sau khi giản ước các phân số cho nhau Ta có:
A=\(\dfrac{1}{6}-\dfrac{1}{15}\)
A=\(\dfrac{1}{10}\)
Không quy đồng hãy tính tổng sau: A=\(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
A=(-1/4.5)+(-1/5.6)+(-1/6.7)+(-1/7.8)+(-1/8x9)+(-1/9.10)
A=(-1/4)-(-1/5)+(-1/5)-(-1/6)+(-1/6)-(-1/7)+(-1/7)-(-1/8)+(-1/8)-(-1/9)-(-1/9)+(-1/10)
A=(-1/4)-(-1/10)
A=-1/4+1/10
A=-3/20
Bài 5: Tính nhanh tổng sau(nếu có):
M=\(\dfrac{3}{2}\)-\(\dfrac{5}{6}\)+\(\dfrac{7}{12}\)-\(\dfrac{9}{20}\)+\(\dfrac{11}{30}\)-\(\dfrac{13}{42}\)+\(\dfrac{15}{56}\)-\(\dfrac{17}{72}\) ; A=\(\dfrac{5}{1.3}\)+\(\dfrac{5}{3.5}\)+\(\dfrac{5}{5.7}\)+.....+\(\dfrac{5}{2019.2021}\)
= \(\dfrac{5}{2}(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021})\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{5}{2}.\dfrac{100}{101}\)
= \(\dfrac{250}{101}\)
Tính tổng: \(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(B=1-\dfrac{1}{7}\)
\(B=\dfrac{6}{7}\)
\(B=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\)
\(=\dfrac{6}{7}\)
trong các phân số sau, phân số bé nhất là:
A.\(\dfrac{6}{6}\) B.\(\dfrac{6}{7}\) C.\(\dfrac{6}{8}\) D.\(\dfrac{6}{9}\)
Phân số \(\dfrac{5}{6}\) bằng phân số nào dưới đây?
A.\(\dfrac{20}{24}\) B.\(\dfrac{24}{20}\) C.\(\dfrac{20}{18}\) D.\(\dfrac{18}{20}\)
Tính tổng sau : \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
giúp mik nha, nhớ lm cả lời giải nx nhe. THANK YOU!!!!❤
Có công thức \(\dfrac{x}{a\left(a+x\right)}=\dfrac{1}{a}-\dfrac{1}{a+x}\) nhé!
Ví dụ: \(\dfrac{2}{2.4}=\dfrac{1}{2}-\dfrac{1}{4}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
Dấu . tức là nhân nhé!
a) Tính tổng: S =\(\dfrac{3}{1.2}\) + \(\dfrac{3}{2.3}\) +\(\dfrac{3}{3.4}\) +\(\dfrac{3}{4.5}\) + ... +\(\dfrac{3}{5015.2016}\)
b) Tính số góc tạo thành bởi 20 tia chung gốc.
Sửa đề : a, \(S=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+\dfrac{3}{4.5}+...+\dfrac{3}{2015.2016}\)
\(=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)
\(=3\left(\dfrac{2016-1}{2016}\right)=3.\dfrac{2015}{2016}=\dfrac{6045}{2016}\)
Câu a) sửa đề: 3/5015.2016 ➜ 3/2015.2016
Giải:
a) S=3/1.2 + 3/2.3 + 3/3.4 +3/4.5 +...+ 3/2015.2016
S=3.(1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/2015.2016)
S=3.(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/2015-1/2016)
S=3.(1-1/2016)
S=3. 2015/2016
S=2015/672
b) Mk chưa biết làm nên bạn tự suy nghĩ nhé, xin lỗi!
Thực hiện phép tính sau:
M=\(\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\)
\(M=\dfrac{20}{112}+\dfrac{20}{280}+\dfrac{20}{520}+\dfrac{20}{832}\\ =\dfrac{20}{8.14}+\dfrac{20}{14.20}+\dfrac{20}{20.26}+\dfrac{20}{26.32}\\ =\dfrac{20}{6}.\left(\dfrac{6}{8.14}+\dfrac{6}{14.20}+\dfrac{6}{20.26}+\dfrac{6}{26.32}\right)\\ =\dfrac{20}{6}.\left(\dfrac{1}{8}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{32}\right)\\ =\dfrac{20}{6}.\left(\dfrac{1}{8}-\dfrac{1}{32}\right)\\ =\dfrac{20}{6}.\dfrac{3}{32}=\dfrac{5}{16}\)