Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\). Chứng minh rằng a = b = c
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\) Chứng minh rằng \(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
a/b = b/c = c/d = (a + b + c)/(b + c + d)
--> ((a + b + c)/(b + c + d))^3 = a^3/b^3
Cần chứng minh:
a^3/b^3 = a/d
<=> a^3/b^3 = a^3/(a^2.d)
--> b^3 = a^2.d
Mà ad = bc (do a/b = c/d)
--> b^3 = abc
<=> b^2 = ac (luôn đúng do a/b = b/c)
--> đpcm
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng
\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>a=bk; c=dk
\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: a/a+b=c/c+d
Cho \(\dfrac{a}{c}=\dfrac{c}{b}\). Chứng minh rằng:\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
Đặt \(\dfrac{a}{c}=\dfrac{c}{b}=k\)
=>\(a=ck;c=bk\)
=>\(a=bk\cdot k=bk^2;c=bk\)
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{\left(bk^2\right)^2+\left(bk\right)^2}{b^2+\left(bk\right)^2}\)
\(=\dfrac{b^2k^4+b^2k^2}{b^2+b^2k^2}=\dfrac{k^4+k^2}{k^2+1}=\dfrac{k^2\left(k^2+1\right)}{k^2+1}=k^2\)
\(\dfrac{a}{b}=\dfrac{bk^2}{b}=k^2\)
Do đó: \(\dfrac{a}{b}=\dfrac{a^2+c^2}{b^2+c^2}\)
“Cho a/c = b/c. Chứng minh rằng a²/b² + c²/b² = a/b”.
Tuy nhiên, có vẻ như có một sự nhầm lẫn ở đây. Nếu a/c = b/c thì a phải bằng b. Khi đó, phương trình trở thành 1 + c²/b² = 1, điều này không đúng với mọi giá trị của b và c. Có thể bạn đã ghi nhầm bài toán. Bạn có thể kiểm tra lại và cung cấp cho tôi bài toán chính xác không?
Cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{\sqrt[3]{abc}}{a+b+c}\ge\dfrac{10}{3}\)
Từ bài toán này (mà bạn đã hỏi cách đây vài bữa):
Ta có: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
Do đó: \(VT\ge\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\)
Lại có: \(\dfrac{a+b+c}{\sqrt[3]{abc}}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}=3\)
Đặt \(\dfrac{a+b+c}{\sqrt[3]{abc}}=x\ge3\Rightarrow VT\ge x+\dfrac{1}{x}=\dfrac{x}{9}+\dfrac{1}{x}+\dfrac{8x}{9}\ge2\sqrt{\dfrac{x}{9x}}+\dfrac{8}{9}.3=\dfrac{10}{3}\) (đpcm)
cho\(\dfrac{a}{b}=\dfrac{c}{b}\). Chứng minh rằng \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
Ta có:
\(\dfrac{a}{b}+\dfrac{a}{b}+\dfrac{b}{c}\ge3\sqrt[3]{\dfrac{a^2}{bc}}=\dfrac{3a}{\sqrt[3]{abc}}\)
\(\dfrac{b}{c}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{3b}{\sqrt[3]{abc}}\)
\(\dfrac{c}{a}+\dfrac{c}{a}+\dfrac{a}{b}\ge\dfrac{3c}{\sqrt[3]{abc}}\)
Cộng vế:
\(3\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)
\(\Rightarrow\) đpcm
Cho \(\dfrac{a}{c}=\dfrac{c}{b}\) chứng minh rằng : \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)
cho \(\dfrac{a}{c}=\dfrac{c}{b}\). Chứng minh rằng: \(\dfrac{b^2-a^2}{a^2+c^2}\)=\(\dfrac{b-a}{a}\)
có làm thì mới có ăn ko làm mà đòi có ăn thì ăn đồng bằng ăn cát
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)chứng minh rằng : \(\dfrac{a^3}{b^3}=\dfrac{a}{d}\)
Bài 1: Cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng:
\(\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)<2
Bài 2: Cho a,b,c là các số dương thỏa mãn \(\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2-a^2+c^2}{2bc}+\dfrac{c^2-b^2+a^2}{2ac}\)>1
Chứng minh rằng a,b,c là 3 cạnh của tam giác
Bài 3:Cho a,b,c>0. Chứng minh rằng \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{b+a}+\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{b+a}{c}\)
Bài 1:a,b,c ba cạnh tam giác => a,b,c dương
\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)
\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)
\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)
p/s: đề sao làm vậy:
mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn