Tìm x
a, \(\left(x-5\right)\cdot\left(x+5\right)-\left(x+3\right)^2=2x-3\)
b, \(\left(2x+3\right)^2+\left(x-1\right)\cdot\left(x+1\right)=5\cdot\left(x+2\right)^2\)
Tìm x:
1, \(\left(x-5\right)\cdot\left(x+5\right)-\left(x+3\right)^2=2x-3\)
2,\(\left(2x+3\right)^2+\left(x-1\right)\cdot\left(x+1\right)=5\cdot\left(x+2\right)^2\)
3, \(\left(x-4\right)^3-\left(x-5\right)\cdot\left(x^2+5x+25\right)=\left(x+2\right)\cdot\left(x^2-2x+4\right)-\left(x+4\right)^3\)
1.\(\left(x-5\right).\left(x+5\right)-\left(x+3\right)^2=2x-3\)
\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9-2x+3=0\)
\(\Leftrightarrow-8x-31=0\)
\(\Leftrightarrow x=\dfrac{-31}{8}\)
\(\left(x-4\right)^3-\left(x-5\right)\left(x^2+5x+25\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-\left(x^3-5^3\right)=\left(x^3+2^3\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-x^3+5^3=x^3+2^3-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x^3-12x^2+48x-64\right)-x^3+5^3=x^3+2^3-\left(x^3+12x^2+48x+64\right)\)
\(\Leftrightarrow x^3-12x^2+48x-64-x^3+5^3=x^3+2^3-x^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-64+5^3=2^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-61=-12x^2-48x-56\)
\(\Leftrightarrow96x=-117\)
\(\Leftrightarrow x=\dfrac{-117}{96}=\dfrac{-39}{32}\)
2. \(\left(2x+3\right)^2+\left(x-1\right)\left(x+1\right)=5\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+12x+9+x^2-1=5\left(x^2+4x+4\right)\)
\(\Leftrightarrow4x^2+12x+9+x^2-1=5x^2+20x+20\)
\(\Leftrightarrow4x^2+x^2-5x^2+12x-20x=20-9+1\)
\(\Leftrightarrow-8x=12\)
\(\Leftrightarrow x=\dfrac{-12}{8}=\dfrac{-3}{2}\)
1:tìm x
a; \(3x+\left|x-2\right|=8\)
b; \(5-\left|x-1\right|=4\)
2:tìm x
\(5\cdot\left(x-2\right)-4\cdot\left(1-3x\right)=\left|3-7\right|+2\cdot\left(1+2x\right)\)
3: tìm x
\(\left(x-2\right)\cdot\left(2x+1\right)-3\cdot\left(x+2\right)=4-5\cdot\left(1-x\right)\)
4:tìm x
\(1\dfrac{1}{2}\cdot\left(x-2\right)-\dfrac{x-5}{3}=3\dfrac{1}{3}\cdot\left(1-2x\right)-\dfrac{5\cdot\left(x+1\right)}{6}\)
5: tìm x
\(\left(x-3\right)\cdot\left(1-x\right)+\left(x-2\right)^2=\left(1-x\right)^2-2\cdot\left(1+x\right)\)
6: tìm x
\(\left(2x-1\right)^2-3\cdot\left(x+2\right)^2=4\cdot\left(x-2\right)-5\cdot\left(x-1\right)^2\)
1. a, 3x + |x - 2| = 8
<=> |x - 2| = 8 - 3x
Xét 2 TH :
TH1: x - 2 = 8 - 3x
<=> x + 3x = 8 + 2
<=> 4x = 10
<=> x = \(\dfrac{5}{2}\) (thỏa mãn)
TH2: x - 2 = -(8 - 3x)
<=> x - 2 = -8 + 3x
<=> -2 + 8 = 3x - x
<=> 6 = 2x
<=> x = 3 (thỏa mãn)
b, 5 - |x - 1| = 4
<=> |x - 1| = 1
<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\) (thỏa mãn)
@Nguyễn Hoàng Vũ
2. 5.(x - 2) - 4.(1 - 3x) = |3 - 7| + 2.(1 + 2x)
<=> 5x - 10 - 4 + 12x = 4 + 2 + 4x
<=> 17x - 14 = 6 + 4x
<=> 17x - 4x = 6 + 14
<=> 13x = 20
<=> x = \(\dfrac{20}{13}\) (thỏa mãn)
@Nguyễn Hoàng Vũ
4. 1\(\dfrac{1}{2}\).(x - 2) - \(\dfrac{x-5}{3}\) = 3\(\dfrac{1}{3}\).(1 - 2x) - \(\dfrac{5.\left(x+1\right)}{6}\)
<=> \(\dfrac{3}{2}\).(x - 2) - \(\dfrac{x-5}{3}\) = \(\dfrac{10}{3}\).(1 - 2x) - \(\dfrac{5x+5}{6}\)
<=> \(\dfrac{3}{2}x-3-\dfrac{x}{3}+\dfrac{5}{3}=\dfrac{10}{3}-\dfrac{20}{3}x-\dfrac{5x}{6}-\dfrac{5}{6}\)
<=> \(\dfrac{3}{2}x-\dfrac{x}{3}+\dfrac{20}{3}x-\dfrac{5x}{6}=\dfrac{10}{3}-\dfrac{5}{6}-3+\dfrac{5}{3}\)
<=> 7x = \(\dfrac{7}{6}\)
<=> x = \(\dfrac{1}{6}\)
@Nguyễn Hoàng Vũ
Tìm x :
\(3x\cdot\left(x-2\right)-2x\cdot\left(2x-1\right)=\left(1-x\right)\cdot\left(1+x\right)\)
\(\left(5x+3\right)\cdot\left(3x-5\right)-\left(x-2\right)\cdot\left(2x+1\right)=6x\cdot\left(3x+1\right)-x^2\)
\(\left(2x-1\right)\cdot\left(2x+1\right)-3\cdot\left(x-1\right)=\left(1-4x\right)\cdot\left(1-x\right)\)
\(\left(2x^2+1\right)\cdot\left(3x^2-1\right)-\left(4x^2-3\right)\cdot\left(x^2+1\right)=x\cdot\left(2x^3+1\right)\)
GIÚP MK ĐI MAI MK PHẢI NỘP RÙI !
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
Làm giúp mình nha
\(a,\left(x-2\right)\cdot\left(x+2\right)\cdot\left(x^2-10\right)=72\)
\(b,\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)\cdot\left(x+4\right)\cdot\left(x+5\right)=40\)
\(c,\left(2x-5\right)^2=\left(4x+7\right)^2\)
\(d,\left(2x^2+3x-1\right)^2-5\cdot\left(2x^2+3x+3\right)+24=0\)
a)\((x^2- 4).(x^2 - 10) = 72 Đặt x^2 - 7 = a(1), ta có (a+3)(a-3)=72 a^2-9=72 a^2=81 a=+-9 xét 2 trường hợp a = 9 và -9 khi thay vào (1) ta có..... tự lm nốt nha \)
b) nhóm x+1 vs x+4 và x+2 vs x+3 ta sẽ có (x2+5x+4)(x2+5x+6)(x+5)=40
câu c dễ lắm... bạn có thể làm 2 cách 1 là xét 2 th khi vế trái bằng vế phải hay trái dấu vế phải
hoặc cách 2 đưa về hiệu 2 bình phương nhá.. cách này dễ hơn
Tìm x
1, \(\left(2x-3\right)\cdot\left(2x+3\right)-4\cdot\left(x+2\right)^2=6\)
2,\(\left(3x+2\right)^2-\left(2x-1\right)\cdot\left(2x+1\right)=5\cdot\left(x-2\right)^2\)
3,\(\left(x+2\right)^2-\left(x+3\right)\cdot\left(x-1\right)=5x\)
1. (2x - 3) . (2x+3) - 4 . (x+ 2)2 = 6
[ ( 2x )2 - 32 ] - 4 . ( x2 + 2.x.2 + 22) = 6
4x2 - 9 - 4 . ( x2 + 4x + 4) = 6
4x2 - 9 - 4x2 - 16x - 16 = 6
-16x -25 = 6
x = \(-\dfrac{31}{16}\)
Tìm x :
1, \(\left(3x+2\right)^2-\left(2x-1\right)\cdot\left(2x+1\right)=5\cdot\left(x-2\right)^2\)
2, \(\left(x+2\right)^2-\left(x+3\right)\cdot\left(x-1\right)=5x\)
3, \(\left(3x-1\right)\cdot\left(x-3\right)+\left(x-2\right)^2=\left(2x-5\right)^2\)
a, \(\left(3x+2\right)^2-\left(2x-1\right)\left(2x+1\right)=5\left(x-2\right)^2\)
\(\Rightarrow9x^2+12x+4-\left(4x^2-1\right)=5\left(x^2-4x+4\right)\)
\(\Rightarrow9x^2+12x+4-4x^2-1=5x^2-20x+20\)
\(\Rightarrow9x^2-4x^2-5x^2+12x+20x=20+1-4\)
\(\Rightarrow32x=17\Rightarrow x=\dfrac{17}{32}\)
b, \(\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)=5x\)
\(\Rightarrow x^2+4x+4-\left(x^2-x+3x-3\right)=5x\)
\(\Rightarrow x^2+4x+4-x^2+x-3x+3-5x=0\)
\(\Rightarrow-3x=-3-4\Rightarrow-3x=-7\Rightarrow x=\dfrac{7}{3}\)
c, \(\left(3x-1\right)\left(x-3\right)+\left(x-2\right)^2=\left(2x-5\right)^2\)
\(\Rightarrow3x^2-9x-x+3+x^2-4x+4=4x^2-20x+25\)
\(\Rightarrow3x^2+x^2-4x^2-9x-x-4x+20x=25-3-4\)
\(\Rightarrow6x=18\Rightarrow x=3\)
Chúc bạn học tốt!!!
Chứng minh biểu thức không phụ thuộc x :
1, \(\left(3x-1\right)^2-2\cdot\left(2x-3\right)\cdot\left(2x+3\right)-\left(x-3\right)^2\)
2, \(\left(3x+2\right)^3-\left(3x-2\right)^3-3\cdot\left(6x-1\right)\cdot\left(6x+1\right)\)
3, \(\left(3x-5\right)^2+3\cdot\left(x+1\right)\cdot\left(x-1\right)-\left(4x-3\right)^2+\left(2x+2\right)\cdot\left(2x+1\right)\)
Thu gọn biểu thức
1,\(\left(x-2\right)^3-\left(2x+3\right)^3-7\cdot\left(1-x\right)^3\)
2,\(\left(x+5\right)\cdot\left(x^2-5x+25\right)-\left(x-2\right)\cdot\left(x^2+2x+4\right)\)
3, \(\left(2x-3\right)\cdot\left(4x^2+6x+9\right)-\left(2x+1\right)^3\)
1: \(=x^3-6x^2+12x-8-8x^3-36x^2-54x-27+7\left(x-1\right)^3\)
\(=-7x^3-42x^2-42x-35+7x^3-21x^2+21x-7\)
\(=-63x^2-21x-42\)
2: \(=x^3+125-\left(x^3-8\right)=125+8=133\)
3: \(=8x^3-27-8x^3-12x^2-6x-1=-12x^2-6x-28\)
Tìm x :
a, \(4x^2-\left(3x+1\right)\cdot\left(2x-1\right)=2\cdot\left(x-3\right)^2\)
b.\(\left(5x-1\right)\cdot\left(x+1\right)-\left(2x-1\right)\cdot\left(2x+1\right)=x\cdot\left(x+1\right)\)
c, \(7x^2-\left(2x-3\right)^2=1+3\cdot\left(x+2\right)^2\)
\(a,4x^2-\left(3x+1\right)\left(2x-1\right)=2\left(x-3\right)^2\)
\(\Leftrightarrow4x^2-\left(6x^2-3x+2x-1\right)=2\left(x^2-6x+9\right)\)
\(\Leftrightarrow4x^2-6x^2+x+1-2x^2+12x-18=0\)
\(\Leftrightarrow-4x^2+13x-17=0\)
\(\Leftrightarrow-4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)-\dfrac{103}{16}=0\)
\(\Leftrightarrow-4\left(x-\dfrac{13}{8}\right)^2=\dfrac{103}{16}\)
\(\Leftrightarrow\left(x-\dfrac{13}{8}\right)^2=\dfrac{-103}{64}\Rightarrow\) pt vô nghiệm
\(b,\left(5x-1\right)\left(x+1\right)-\left(2x-1\right)\left(2x+1\right)=x.\left(x+1\right)\)\(\Leftrightarrow5x^2+5x-x-1-\left(4x^2-1\right)=x^2+x\)
\(\Leftrightarrow5x^2+5x-x-1-4x^2+1-x^2-x=0\) \(\Leftrightarrow3x=0\Rightarrow x=0\)
\(c,7x^2-\left(2x-3\right)^2=1+3\left(x+2\right)^2\)
\(\Leftrightarrow7x^2-\left(4x^2-12x+9\right)=1+3\left(x^2+4x+4\right)\)
\(\Leftrightarrow7x^2-4x^2+12x-9=1+3x^2+12x+12\)\(\Leftrightarrow7x^2-4x^2+12x-9-1-3x^2-12x-12=0\)\(\Leftrightarrow-22=0\) ( vô lí)
Vậy phương trình vô nghiệm