\(\dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{9}+...+\dfrac{1}{729}\)
tinhs
1+\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)+\(\dfrac{1}{729}\)=?
Đặt A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = 3 + 1 + \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( 3 + 1 + \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
Úi
2A = 3 - \(\dfrac{1}{729}=\dfrac{2186}{729}\)
A = \(\dfrac{2186}{729}:2=\dfrac{1093}{729}\)
\(A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
Tính A
\(A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
\(3A=3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
\(3A-A=\left(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\right)\)
\(2A=3-\dfrac{1}{729}=\dfrac{2186}{729}\)
\(A=\dfrac{2186}{729}\div2=\dfrac{1093}{729}\)
A = \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\)
3A = \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
3A - A = ( \(3+1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\) ) - ( \(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\) )
2A = 3 - \(\dfrac{1}{729}=\dfrac{728}{729}\)
A = \(\dfrac{728}{729}:2=\dfrac{364}{729}\)
Câu 3. (2 điểm) Tính nhanh tổng sau
S = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) +\(\dfrac{1}{81}\) + \(\dfrac{1}{243}\)+ \(\dfrac{1}{729}\)
S= 1/1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
S= 3 x ( 1/1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 )
S = 3 +1 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
S= 3 +1 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 - 1 - 1/9 -1/27 - 1/81 - 1/243 - 1/729
S = 3 - 1/729
S= 142/729
tính bằng cách hợp lí
A = \(\dfrac{2018\times2017-1}{2016\times2018+2017}\)
B = \(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}+\dfrac{1}{2187}\)
$A=\dfrac{2018.2017-1}{2016.2018+2017}$
$=>A={2018.2016+2018-1}{2016.2018+2017}$
$=>A={2018.2016+2017}{2016.2018+2017}$
$=>A=1$
\(A=\dfrac{2018.2017-1}{2018.2016+2017}\)
\(A=\dfrac{2018.\left(2016+1\right)-1}{2018.2016+2017}\)
\(A=\dfrac{2018.2016+2018-1}{2018.2016+2017}\)
\(A=\dfrac{2018.2016+2017}{2018.2016+2017}=1\)
\(B=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}+\dfrac{1}{2187}\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^7}\)
\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\)
\(\Rightarrow3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^6}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^7}\right)\)
\(\Rightarrow2B=1-\dfrac{1}{3^7}\Rightarrow B=\dfrac{1-\dfrac{1}{2187}}{2}=\dfrac{1093}{2187}\)
Chúc bạn học tốt!!!
tính:\(\dfrac{1}{3}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{143}+\dfrac{1}{729}\)
\(\dfrac{1}{3}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)+\(\dfrac{1}{729}\)
=\(\dfrac{243}{729}\)+\(\dfrac{81}{729}\)+\(\dfrac{27}{729}\)+\(\dfrac{3}{729}\)+\(\dfrac{1}{729}\)
=\(\dfrac{355}{729}\)
chúc bạn học tốt ạ
\(\dfrac{1}{2}\)-\(\dfrac{3}{4}\).\(\left(\dfrac{-6}{5}\right)\)
\(\dfrac{\dfrac{1^0}{9}.3^2.9^3}{729}\)
a) \(\dfrac{1}{2}-\dfrac{3}{4}.\dfrac{-6}{5}\)
\(=\dfrac{1}{2}-\dfrac{3.\left(-6\right)}{4.5}\)
\(=\dfrac{1}{2}-\dfrac{-18}{20}\)
\(=\dfrac{1}{2}+\dfrac{9}{10}\)
\(=\dfrac{5}{10}+\dfrac{9}{10}\)
\(=\dfrac{5+9}{10}\)
\(=\dfrac{14}{10}\)
\(=\dfrac{7}{5}\)
b) \(\dfrac{\dfrac{1^0}{9}.3^2.9^3}{729}\)
\(=\dfrac{9^{-1}.3^2.9^3}{729}\)
\(=\dfrac{9^{-1}.9.9^3}{729}\)
\(=\dfrac{9^{-1+1+3}}{729}\)
\(=\dfrac{9^3}{729}\)
\(=\dfrac{729}{729}\)
\(=1\)
Tinhs A=\(\left(\dfrac{5}{2}-\dfrac{2}{5}+\dfrac{1}{10}\right):\left(\dfrac{5}{2}-\dfrac{2}{3}+\dfrac{1}{32}\right)\)
Bạn có thể tự bấm máy nhé:
A=\(\left(\dfrac{5}{2}-\dfrac{2}{5}+\dfrac{1}{10}\right):\left(\dfrac{5}{2}-\dfrac{2}{3}+\dfrac{1}{32}\right)\)
\(\Rightarrow A=\dfrac{11}{5}:\dfrac{179}{96}=\dfrac{11}{5}.\dfrac{96}{179}=\dfrac{1056}{895}\)
Chúc bạn học tốt!
\(\dfrac{\left(\dfrac{1}{9}\right)^0.3^2.9^3}{729}\)
Tinhs
\(\dfrac{1}{x^2+x+1}-\dfrac{1}{x-x^2}-\dfrac{x^2+2x}{x^3-1}\)
\(\dfrac{1}{x^2+x+1}-\dfrac{1}{x-x^2}-\dfrac{x^2+2x}{x^3-1}\)
\(=\dfrac{\left(x-1\right)x}{x\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2+x+1}{x\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{\left(x^2+2x\right)x}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+x^2+x+1-x^3-2x^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1-x^3}{x\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-\left(x^3-1\right)}{x\left(x^3-1\right)}=\dfrac{-1}{x}\)