\(\dfrac{x}{-10}\) = \(\dfrac{-4}{8}\) = \(\dfrac{-7}{y}\) = \(\dfrac{z}{6}\)
Tìm x, y, z.
HELP ME
Bài 1: Tìm x,y,z:
a) \(\dfrac{x}{y}\)=\(\dfrac{10}{9}\); \(\dfrac{y}{z}\)=\(\dfrac{3}{4}\); x-y+z =78
b)\(\dfrac{x}{y}=\dfrac{9}{7}\);\(\dfrac{y}{z}\)=\(\dfrac{7}{3}\); x-y+z =-15
c)\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{3}\); x2 +y2+z2=200
a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)
\(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)
b)Ta có: \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)
Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)
Tìm x,y,z biết:a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{10}\)và y-x=6
Tìm x,y,z biết:b) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{7}\)và x-2y+z=18
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
⇒\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{5}=2\Rightarrow y=10\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)
\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)
\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{7}=2\Rightarrow z=14\)
Tìm x, y, z biết :
\(\dfrac{x}{6}=\dfrac{y}{6}:\dfrac{y}{8}=\dfrac{z}{7}\)
Ta có: \(\dfrac{x}{6}=\dfrac{y}{6}:\dfrac{y}{8}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{6}=\dfrac{4}{3}=\dfrac{z}{7}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8\\z=\dfrac{28}{3}\end{matrix}\right.\)
1. tìm các số chưa biết :
a) \(\dfrac{4}{3}\)= \(\dfrac{8}{x}\)=\(\dfrac{-y}{21}\)=\(\dfrac{-40}{z}\)=\(\dfrac{16}{t}\)=\(\dfrac{y}{111}\)
b) \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{14}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{4}{-78}\)
2. tìm x biết :
a) \(\dfrac{2}{x}=\dfrac{x}{8}\)
b) \(\dfrac{2x-9}{240}=\dfrac{39}{80}\)
c) \(\dfrac{x-1}{9}=\dfrac{8}{3}\)
mn giúp mk nha :>
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
Tìm x, y, z, t ∈ Z biết:
a, \(\dfrac{5}{x}=\dfrac{-10}{12}\) b, \(\dfrac{4}{-6}=\dfrac{x+3}{9}\) c, \(\dfrac{x-1}{25}=\dfrac{4}{x-1}\) d, \(\dfrac{x+1}{y}=\dfrac{-3}{5}\)
e, \(\dfrac{-12}{6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{Z}{-17}=\dfrac{-t}{-9}\)
h, \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{Z^3}{-2}\)
a) \(\dfrac{5}{x}=\dfrac{-10}{12}.\Rightarrow x=-6.\)
b) \(\dfrac{4}{-6}=\dfrac{x+3}{9}.\Rightarrow x+3=-6.\Leftrightarrow x=-9.\)
c) \(\dfrac{x-1}{25}=\dfrac{4}{x-1}.\left(đk:x\ne1\right).\Leftrightarrow\dfrac{x-1}{25}-\dfrac{4}{x-1}=0.\)
\(\Leftrightarrow\dfrac{x^2-2x+1-100}{25\left(x-1\right)}=0.\Leftrightarrow x^2-2x-99=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11.\\x=-9.\end{matrix}\right.\) \(\left(TM\right).\)
Câu 1 : Biết\(\dfrac{x}{t}=\dfrac{5}{6};\dfrac{y}{z}=\dfrac{1}{5};\dfrac{z}{x}=\dfrac{7}{3}\) ( x; y; z; t khác 0 ). Hãy tìm tỉ số \(\dfrac{t}{y}\)
A. \(\dfrac{t}{y}=\dfrac{14}{25}\) B. \(\dfrac{t}{y}=\dfrac{7}{8}\) C. \(\dfrac{t}{y}=\dfrac{18}{7}\) D. \(\dfrac{t}{y}=\dfrac{6}{7}\)
Mọi người giúp em với ạ
tìm các số x,y,z biết:
a) \(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3}v\text{à}x-y+z=-15\)
b) \(\dfrac{x}{y}=\dfrac{7}{20};\dfrac{y}{z}=\dfrac{5}{8}v\text{à}2x+5y-2z=100\)
c)\(5x=8y=20zv\text{à}x-y-z=3\)
d)\(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}zv\text{à}-x+y+z=-120\)
a) \(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
⇒\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c: Ta có: 5x=8y=20z
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)
Do đó: x=24; y=15; z=6
Tìm các số x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và x + z - y = -49
b) \(\dfrac{x}{3}=\dfrac{y}{-2};\dfrac{x}{6}=\dfrac{z}{7}\) và 3x - z + 2y = 3
Lm hết nha mọi ngừi ^^
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Do đó: x=-70; y=-135; z=-84
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
a) \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x+z-y}{10+12-15}=-\dfrac{49}{7}=-7\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{-2}\\\dfrac{x}{6}=\dfrac{z}{7}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{-4}=\dfrac{z}{7}=\dfrac{3x}{18}=\dfrac{2y}{-8}=\dfrac{3x-z+2y}{18-7-8}=\dfrac{3}{3}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.6=6\\y=1.\left(-4\right)=-4\\z=1.7=7\end{matrix}\right.\)
\(\dfrac{4}{x-3}=\dfrac{8}{y-6}=\dfrac{20}{z-15}\)
\(\Rightarrow\dfrac{x-3}{4}=\dfrac{y-6}{8}=\dfrac{z-15}{20}\)
\(\Rightarrow\dfrac{x}{4}-\dfrac{3}{4}=\dfrac{y}{8}-\dfrac{3}{4}=\dfrac{z}{20}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{8}=\dfrac{z}{20}\)
Đặt: \(\dfrac{x}{4}=\dfrac{y}{8}=\dfrac{z}{20}=k\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=8k\\z=20k\end{matrix}\right.\)
Thay vào đk đề bài: \(640k^3=640\Leftrightarrow k=1\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=8\\z=20\end{matrix}\right.\)