Chứng minh rằng tổng : T = 2010 + 20102 + 20103 + ... + 20102010
Chia hết cho 2011.
Chứng minh rằng tổng : T = 2010 + 20102 + 20103 + ... + 20102010
Chia hết cho 2011.
\(T=2010\left(1+2010\right)+2010^3\left(1+2010\right)+....+2010^{2009}\left(1+2010\right)\)
\(=2010.2011+...+2010^{2009}.2011\) chia hết cho 2011
=>đpcm
\(T=\left(2010+2010^2\right)+....\left(2010^{2009}+2010^{2010}\right)\)
\(T=2010\left(1+2010\right)+...+2010^{2009}\left(1+2010\right)\)
\(T=\left(2010+....+2010^{2009}\right).2011\)
Chia hết cho 2011
Chứng minh rằng :
(2010\(^{ }\)^2011- 2010^2010) chia hết cho 2009
A = 20102011 - 20102010
A = 20102010 .( 2010 - 1)
A = 20102010.2009
2009 ⋮ 2009 ⇒ A = 20102010.2009 ⋮ 2009
Chứng minh tổng của :
T = 2010 + 20100 + 20103 + ... + 20102010
Chia hết cho 2011 ?
Chứng minh rằng: \(2009^{2008}+2011^{2010}\) chia hết cho 2010.
Nó có chia hết à ???
Ta thấy 2009 chia 2010 dư -1
=> 2009 ^ 2008 chia 2010 dư 1 (1)
Lại có 2011 chia 2010 dư 1
=> 2011^2010 chia 2020 dư 1 (2)
Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )
2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010
=2009^2008+2011^2010
=2009^2008+2011^2010+1-1
=(2009^2008+ 1) + (2011^2010– 1)
= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010
2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010
=2009^2008+2011^2010
=2009^2008+2011^2010+1-1
=(2009^2008+ 1) + (2011^2010– 1)
= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010
Chứng minh rằng:
20112011 - 1 chia hết cho 2010
Chứng minh rằng tổng 50+55+...+52010+52011 chia hết cho 6
Lời giải:
Đặt $A=5^0+5^1+5^2+5^3+....+5^{2010}+5^{2011}$
$A=(5^0+5^1)+(5^2+5^3)+....+(5^{2010}+5^{2011})$
$=(1+5)+5^2(1+5)+...+5^{2010}(1+5)$
$=(1+5)(1+5^2+....+5^{2010})$
$=6(1+5^2+....+5^{2010})\vdots 6$
Chứng minh rằng:\(\left(2011+2011^2+2011^3+...........+2011^{2010}\right)\)) chia hết cho 503
Chứng minh rằng: \(2009^{2008}+2011^{2010}\)chia hết cho 2010
From: exoplanet
To: Nguyễn Ngọc Phương Thảo
\(2009^{2008}+2011^{2010}=\left(2009^{2008}+1\right)+\left(2011^{2010}-1\right)\)
\(=\left(2009+1\right)\left(2009^{2007}+a\right)+\left(2011-1\right)\left(2011^{2009}-b\right)\)
chứng minh rằng : \(2009^{2008}+2011^{2010}\) chia hết cho 2010