Tính:
5n+1-4.5n
a)5n+1 -4.5n
b)3xn.(6xn-3+1)-2xn(9xn-3-1)
a)5n+1 -4.5n=5n.5-4.5n=5n(5-4)=5n
b)3xn.(6xn-3+1)-2xn(9xn-3-1)=18x2n-3+3xn-182n-3+2xn
=3xn+2xn=5xn
Áp dụng tính chất chia hết, xét xem tổng 110+5n+(5n+1)+(5k+1) chia hết cho 5 không?
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-6n^5+3n^3-1}{n^4-8n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-5n^7+8n^5-n}{5n^6-2n}\)
Tính:
\(D=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{\left(5n+1\right).\left(5n+6\right)}\)
Tính đầy đủ hộ mik vs. Mik đag cần gấp
D = \(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}\)
= \(\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\right)\)
= \(\frac{1}{5}\left(1-\frac{1}{5n+6}\right)\)
= \(\frac{1}{5}.\frac{5n+5}{5n+6}\)
= \(\frac{n+1}{5n+6}\)
Tính: (1/9 - 1/5n+4) . 5/3
1. Tính tổng
a, A=1/2.3 + 1/3.4 + ... + 1/99.100
b, B= 5/1.4 + 5/4.7 + ... + 5/100.103
c, C= 1/15 +1/35 + ... + 1/2499
d, D=1/1.6 + 1/6.11 + 1/11.16 + ... +1/(5n+1).(5n+6)
mn ơi mình đang cần gấp
a: =1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100=49/100
b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)
=5/3*102/103
=510/309=170/103
c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)
=1/2*16/51=8/51
Phần I: Trắc nghiệm
Tính l i m ( 5 n – n 2 + 1 ) bằng
A. + ∞
B. - ∞
C. 5
D. -1
Tính các giới hạn sau:
a) \(\lim \frac{{5n + 1}}{{2n}};\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}};\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}};\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right);\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}};\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}.\)
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 0\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\)
Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} = + \infty \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)
Cho dãy số ( u n ) với u n = - 5 n + 4 n - 7 n + 1 + 4 n + 1 . Tính l i m u n
A. - 1 7
B. + ∞
C. 1 4
D. 0
Ta có: u n = − 5 n 1 + 4 n − 5 n − 7 n − 7 + 4.4 n − 7 n = 5 7 n ⋅ 1 + − 4 5 n − 7 + 4. − 4 7 n
Vì lim − 4 5 n = lim − 4 7 n = 0 nên lim 1 + − 4 5 n − 7 + 4. − 4 7 n = − 1 7 và lim 5 7 n = 0
Do đó lim u n = 0
Chọn đáp án D.
cho m^5n =-4.tính -1/8*m^15n+42