a: =1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100=49/100
b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)
=5/3*102/103
=510/309=170/103
c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)
=1/2*16/51=8/51
a: =1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100=49/100
b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)
=5/3*102/103
=510/309=170/103
c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)
=1/2*16/51=8/51
chứng minh rằng: a) a/n.n(n+a)=1/n-1/n+a ; b) áp dụng câu a tính: A=1/2.3+1/3.4+...+1/99.101 ; B=5/1.4+5/4.7+...+5/100.103 ; C=1/15+1/35+...+1/2499
Chứng minh 1/1.6+1/6.11+1/11.16+...+1/(5n+1)(5n+6)=n+1/5n+6
Tính:
\(D=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{\left(5n+1\right).\left(5n+6\right)}\)
Tính đầy đủ hộ mik vs. Mik đag cần gấp
C = 1/1.6+1/6.11+1/11.16+.....+1/(5n+1).(5n+6) n thuoc N
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
Tính:
a) A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) +...+ \(\dfrac{1}{998.999}\) + \(\dfrac{1}{999.1000}\)
b) B = \(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\) + \(\dfrac{1}{11.16}\) +...+ \(\dfrac{1}{495.500}\)
c) C = \(\dfrac{1}{1.2.3}\) + \(\dfrac{1}{2.3.4}\) + \(\dfrac{1}{3.4.5}\) +...+ \(\dfrac{1}{998.999.1000}\)
(Mong mn giúp ạ)
tính các tổng sau một cách hợp lý : B= 1/1.6 + 1/6.11 + 1/11.16 + .........+ 1/(5n+1) . (5n+6) giúp mình nhé mình gấp lắm rồi làm ơn
Chứng minh rằng với mọi n thuộc N ta luôn có:
1/1.6 + 1/6.11 + 1/11.16 + ......+ 1/( 5n + 1) (5n + 6) = n+1/ 5n + 6
chứng tỏ rằng với mọi n thuộc N ta luôn có
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)