Giúp mk câu 2 bài 3; bài 4 bài 5 nhé
Thanks!
mng giúp mk câu 2 bài 2 và tất cả bài 3 ạ :>>
Câu 5:
\(VT=\dfrac{x^2yz}{xy+x^2yz+xyz}+\dfrac{y}{yz+y+xyz}+\dfrac{z}{xz+z+1}\\ =\dfrac{xz}{1+z+xz}+\dfrac{1}{z+1+xz}+\dfrac{z}{zx+z+1}\\ =\dfrac{zx+z+1}{zx+z+1}=1\)
Làm giúp mk bài 2 những câu mk đã làm rồi thì soát giúp mk vs!!!!
1 watched
2 locking - was - dropped
4 would finish
5 write - will try - to make
5 left
6 Does - asspoint
III
1 handle
2 satisfying
3 conservation
giúp mk câu c bài 2 tự luận câu c bài hình vs 2 bài cuối với ạ
Giúp mk bài 3 câu a với,mk đang cần gấp
Bài 1:
a: \(=y\left(4x^2-1\right)=y\left(2x-1\right)\left(2x+1\right)\)
CÁC BN ƠI LM ƠN GIÚP MIK VS MK CẦN GẤP LẮM R MK NGHĨ 3 NAGYF K RA LM ƠN GIÚP MK VS GIÚP MK BÀI 3 BỎ CÂU D NHÉ MK CẢM ƠN LM ƠN GIÚP MK VS
2:
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH=12cm
b: ΔAHB vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
ΔAHC vuông tại H có HE vuông góc AC
nên AE*AC=AH^2
=>AD*AB=AE*AC
c: góc IAC+góc AED
=góc ICA+góc AHD
=góc ACB+góc ABC=90 độ
=>AI vuông góc ED
4:
a: góc BDH=góc BEH=góc DBE=90 độ
=>BDHE là hình chữ nhật
b: BDHE là hình chữ nhật
=>góc BED=góc BHD=góc A
Xét ΔBED và ΔBAC có
góc BED=góc A
góc EBD chung
=>ΔBED đồng dạng với ΔBAC
=>BE/BA=BD/BC
=>BE*BC=BA*BD
c: góc MBC+góc BED
=góc C+góc BHD
=góc C+góc A=90 độ
=>BM vuông góc ED
Giải giúp mk 2 bài này với ạ mk đag cần gấp . dịch giúp mk 4 câu của part 7
P6:
1. big
2. been
3. bought
4. people
P7:
1. T
2. F
3. F
4. F
Giúp mk câu b bài 3 vs ạ
ĐKXĐ: \(-1\le x\le3\)
Đặt \(\sqrt{x+1}+\sqrt{3-x}=t\ge\sqrt{x+1+3-x}=2\)
\(\Rightarrow4+2\sqrt{-x^2+2x+3}=t^2\)
\(\Rightarrow\sqrt{-x^2+2x+3}=\dfrac{t^2-4}{2}\) (1)
Phương trình trở thành:
\(t-\dfrac{t^2-4}{2}=2\)
\(\Leftrightarrow2t-t^2=0\Rightarrow\left[{}\begin{matrix}t=0\left(loại\right)\\t=2\end{matrix}\right.\)
Thế vào (1):
\(\Rightarrow\sqrt{-x^2+2x+3}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
giúp mk bài này, tự làm, đừng cop, ko làm tắt. Bài 1 câu a và bài 2 câu 1
Bài 1:
a) Ta có: \(M=\left(\dfrac{x+2}{x^2+2x+1}+\dfrac{x-2}{1-x^2}\right)\cdot\dfrac{x+1}{x}\)
\(=\left(\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}-\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\right)\cdot\dfrac{x+1}{x}\)
\(=\dfrac{x^2-x+2x-2-\left(x^2+x-2x-2\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{x+1}{x}\)
\(=\dfrac{x^2+x-2-x^2+x+2}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x}\)
\(=\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x}\)
\(=\dfrac{2}{x^2-1}\)
Bài 2:
1: Ta có: \(\left(x-5\right)^2+\left(x+3\right)^2=2\left(x-4\right)\left(x+4\right)-5x+7\)
\(\Leftrightarrow x^2-10x+25+x^2+6x+9=2\left(x^2-16\right)-5x+7\)
\(\Leftrightarrow2x^2-4x+34=2x^2-32-5x+7\)
\(\Leftrightarrow2x^2-4x+34-2x^2+5x+25=0\)
\(\Leftrightarrow x+59=0\)
hay x=-59
Vậy: S={-59}
Giúp mk câu g,h,i bài 1;bài 2 nhé
a) -28xy5z3 : 7xy2z3= -4y3
b) 8x2y2z : 6xyz= 6xy
c) 6x3y4 : x3y=6y3
d) 30x2y2z: 6xyz
e) 54x4y2z: 9x4y= 6y3z
f) x4y3z2 : 3xyz2= \(\dfrac{1}{2}\)x3y2
g) (x+y)5: (x+y)4= (x+y)1= x+y
h) (x-y)7 : (y-x)6 = -(y-x)7: (y-x)6= -(y-x)1= -(y-x) = -y +x
i) (x-y+z)5 : (x-y+z)4 = (x-y+z)1= (x+y-z)= x+y-z
Giúp mk giải bài 2 câu 1 với mk đang cần gấp
ĐK: \(\left\{{}\begin{matrix}x\ne-y\\y\ge\dfrac{3}{2}\end{matrix}\right.\).
\(\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}=1\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-1=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-\dfrac{x+y}{x+y}=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y+3-x-y=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+3=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-\left(2y-3\right)=0\\2x-\sqrt{2y-3}=0\end{matrix}\right..\)
Đặt a = x, b = \(\sqrt{2y-3}\).
Hệ phương trình trở thành: \(\left\{{}\begin{matrix}a-b^2=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\2b^2-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\b\left(2b-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\a=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y-3=\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y=\dfrac{13}{4}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\y=\dfrac{13}{8}\end{matrix}\right.\end{matrix}\right..\)
Vậy hệ phương trình có nghiệm (x;y) \(\in\) \(\left\{\left(0;\dfrac{3}{2}\right),\left(\dfrac{1}{4};\dfrac{13}{8}\right)\right\}\).