a.\(\sqrt{2}+\sqrt{8}+\sqrt{50}\)
b.\(4\sqrt{3}+\sqrt{27}-\sqrt{45}+\sqrt{5}\)
A\(=\)\((3\sqrt{8}+2\sqrt{50}-4\sqrt{72})\)\(➗\)\(8\sqrt{2}\)
B\(=\)\((-4\sqrt{20}+5\sqrt{500}-3\sqrt{45})\div5 \)
C\(=(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1})\div\sqrt{48}\)
c: Ta có: \(C=\left(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\right):\sqrt{48}\)
\(=\dfrac{4+2\sqrt{3}-4+2\sqrt{3}}{2}:4\sqrt{3}\)
\(=\dfrac{1}{2}\)
Rút gọn các biếu thức sau:
$ \begin{array}{l} A=2 \sqrt{8}-3 \sqrt{32}+\sqrt{50}; \\ B=\sqrt{12}+4 \sqrt{27}-3 \sqrt{48}; \\ C=\sqrt{20 a}+4 \sqrt{45 a}-2 \sqrt{125 a} \text { với } a \geq 0 . \end{array} $
a) \(A=2\sqrt{8}-3\sqrt{32}+\sqrt{50}\)
\(A=2\sqrt{4.2}-3\sqrt{16.2}+\sqrt{25.2}\)
\(A=2.2\sqrt{2}-3.4\sqrt{2}+5\sqrt{2}\)
\(A=4\sqrt{2}-12\sqrt{2}+5\sqrt{2}\)
\(A=\left(4-12+5\right)\sqrt{2}\)
\(A=-3\sqrt{2}\)
b) \(B=\sqrt{12}+4\sqrt{27}-3\sqrt{48}\)
\(B=\sqrt{4.3}+4\sqrt{9.3}-3\sqrt{16.3}\)
\(B=2\sqrt{3}+4.3\sqrt{3}-3.4\sqrt{3}\)
\(B=2\sqrt{3}\)
c) \(C=\sqrt{20a}+4\sqrt{45a}-2\sqrt{125a}\left(a\ge0\right)\)
\(C=\sqrt{4.5a}+4\sqrt{9.5a}-2\sqrt{25.5a}\)
\(C=2\sqrt{5a}+4.3\sqrt{5a}-2.5\sqrt{5a}\)
\(C=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}\)
\(C=\left(2+12-10\right)\sqrt{5a}\)
\(C=4\sqrt{5a}\)
a) ta có \(2\sqrt{8}=2\sqrt{4.2}=4\sqrt{2},3\sqrt{32}=3\sqrt{16.2}=12\sqrt{2},\sqrt{50}=\sqrt{25.2}=5\sqrt{2}\) \(\Rightarrow A=4\sqrt{2}-12\sqrt{2}+5\sqrt{2}=-3\sqrt{2}\) b) ta có \(\sqrt{12}=\sqrt{4.3}=2\sqrt{3},4\sqrt{27}=4\sqrt{9.3}=12\sqrt{3},3\sqrt{48}=3\sqrt{16.3}=12\sqrt{3}\Rightarrow B=2\sqrt{3}+12\sqrt{3}-12\sqrt{3}=26\sqrt{3}\)c) ta có \(\sqrt{20a}=\sqrt{4.5a}=2\sqrt{5a},4\sqrt{45a}=4\sqrt{9.5a}=12\sqrt{5a},2\sqrt{125a}=2\sqrt{25.5a}=10\sqrt{5a}\Rightarrow C=2\sqrt{5a}+12\sqrt{5a}-10\sqrt{5a}=4\sqrt{5a}\)
a, -3 căn 2
b, 2 căn 3
c, 4 căn (5a)
Rút gọn biểu thức
I=(2\(\sqrt{3}\)-5\(\sqrt{27}\)+4\(\sqrt{12}\)):\(\sqrt{3}\)
K=\(\sqrt{125}\)-4\(\sqrt{45}\)+3\(\sqrt{20}\)-\(\sqrt{80}\)
L=2\(\sqrt{9}\)+\(\sqrt{25}\)-5\(\sqrt{4}\)
N=2\(\sqrt{32}\)-5\(\sqrt{27}\)-4\(\sqrt{8}\)+3\(\sqrt{75}\)
O=2\(\sqrt{3.5^2}\)-3\(\sqrt{3.2^2}\)+\(\sqrt{3.3^2}\)
\(I=\left(2\sqrt{3}-5\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-5\sqrt{3}.\sqrt{3^2}+2\sqrt{2^2}.\sqrt{3}\right):\sqrt{3}\)
\(=\left(2\sqrt{3}-15\sqrt{3}+8\sqrt{3}\right):\sqrt{3}\)
\(=-5\sqrt{3}.\dfrac{1}{\sqrt{3}}\)
\(=-5\)
\(K=\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\)
\(=\sqrt{5^2.5}-4\sqrt{3^2.5}+3\sqrt{2^2.5}-\sqrt{4^2.5}\)
\(=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}\)
\(=\sqrt{5}.\left(5-12+6-4\right)\)
\(=-5\sqrt{5}\)
\(L=2\sqrt{9}+\sqrt{25}-5\sqrt{4}\)
\(=2\sqrt{3^2}+\sqrt{5^2}-5\sqrt{2^2}\)
\(=2.3+5-5.2\)
\(=1\)
\(N=2\sqrt{32}-5\sqrt{27}-4\sqrt{8}+3\sqrt{75}\)
\(=2.4\sqrt{2}-5.3\sqrt{3}-4.2\sqrt{2}+3.5\sqrt{3}\)
\(=8\sqrt{2}-8\sqrt{2}-15\sqrt{3}+15\sqrt{3}\)
\(=0\)
\(O=2\sqrt{3.5^2}-3\sqrt{3.2^2}+\sqrt{3.3^2}\)
\(=2.5\sqrt{3}-3.2\sqrt{3}+3\sqrt{3}\)
\(=10\sqrt{3}-6\sqrt{3}+3\sqrt{3}\)
\(=7\sqrt{3}\)
\(L=\dfrac{2\sqrt{3}-15\sqrt{3}+8\sqrt{3}}{\sqrt{3}}=2-15+8=-5\)
\(K=5\sqrt{5}-12\sqrt{5}+6\sqrt{5}-4\sqrt{5}=-5\sqrt{5}\)
L=2*3+5-5*2=5-4=1
N=8căn 2-8căn2-15căn3+15căn 3=0
O=10căn 3-6căn3+3căn3=7căn 3
rút gọn biểu thức
E=2\(\sqrt{3}\)+3\(\sqrt{27}\)-\(\sqrt{300}\)
F=3\(\sqrt{2}\)+4\(\sqrt{18}\)
G=2\(\sqrt{3}\)-4\(\sqrt{27}\)+5\(\sqrt{48}\)
H=(3\(\sqrt{50}\)-5\(\sqrt{18}\)+3\(\sqrt{8}\))\(\sqrt{2}\)
\(E=2\sqrt{3}+3\sqrt{3^3}-\sqrt{100.3}\\ =2\sqrt{3}+9\sqrt{3}-10\sqrt{3}\\ =\left(2+9-10\right)\sqrt{3}=\sqrt{3}\)
\(F=\sqrt{3^2.2}+4\sqrt{18}=\sqrt{18}+4\sqrt{18}=\left(1+4\right)\sqrt{18}=5\sqrt{18}\)
\(G=2\sqrt{3}-4\sqrt{3^3}+5\sqrt{4^2.3}=2\sqrt{3}-12\sqrt{3}+20\sqrt{3}=\left(2-12+20\right)\sqrt{3}=10\sqrt{3}\)
\(H=\left(3\sqrt{25.2}-5\sqrt{9.2}+3\sqrt{2^3}\right)\sqrt{2}\\ =\left(15\sqrt{2}-15\sqrt{2}+6\sqrt{2}\right)\sqrt{2}\\ =6\sqrt{2}.\sqrt{2}=6\)
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)
\(=19\sqrt{3\sqrt{2}}\)
(1) rút gọn biểu thức:
a) A= \(3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
b) B= \(\sqrt{7-4\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
c) C= \(\dfrac{1}{3+\sqrt{5}}+\dfrac{1}{3-\sqrt{5}}\)
d) D= \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
giúp mk vs ạ mai mk hc rồi
a) \(\Leftrightarrow A=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}=3\sqrt{2}\)
b) \(\Leftrightarrow B=\sqrt{7-2\sqrt{12}}+\sqrt{12+2\sqrt{27}}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}=2-\sqrt{3}+3+\sqrt{3}=5\)
c) \(\Leftrightarrow C=\dfrac{3-\sqrt{5}+3+\sqrt{5}}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{6}{4}=\dfrac{3}{2}\)
d) \(\Leftrightarrow D=3-\left(-2\right)-5=0\)
Rút gọn
1, \(2\sqrt{5}-\sqrt{125}-\sqrt{80}\)
2, \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\)
3, \(\sqrt{18}-3\sqrt{80}-2\sqrt{50}+2\sqrt{45}\)
4, \(\sqrt{27}-2\sqrt{3}+2\sqrt{48}-3\sqrt{75}\)
5, \(3\sqrt{2}-4\sqrt{18}+\sqrt{32}-\sqrt{50}\)
6, \(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\)
7, \(\sqrt{20}-2\sqrt{45}-3\sqrt{80}+\sqrt{125}\)
8, \(6\sqrt{12}-\sqrt{20}-2\sqrt{27}+\sqrt{125}\)
9, \(4\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
10, \(2\sqrt{18}-3\sqrt{80}-5\sqrt{147}+5\sqrt{245}-3\sqrt{98}\)
Các bạn ơi !! giúp mik với đi !!!!!
1,
\(2\sqrt{5}-\sqrt{125}-\sqrt{80}\\ =2\sqrt{5}-\sqrt{25\cdot5}-\sqrt{16\cdot5}\\ =2\sqrt{5}-5\sqrt{5}-4\sqrt{5}\\ =-7\sqrt{5}\)
2,
\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}\\ =3\sqrt{2}-\sqrt{4\cdot2}+\sqrt{25\cdot2}-4\sqrt{16\cdot2}\\ =3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}\\=-10\sqrt{2}\)
3,
\(\sqrt{18}-3\sqrt{80}-2\sqrt{50}+2\sqrt{45}\\ =\sqrt{9\cdot2}-3\sqrt{16\cdot5}-2\sqrt{25\cdot2}+2\sqrt{9\cdot5}\\ =3\sqrt{2}-12\sqrt{5}-10\sqrt{2}+6\sqrt{5}\\ =-7\sqrt{2}-6\sqrt{5}\)
4,
\(\sqrt{27}-2\sqrt{3}+2\sqrt{48}-3\sqrt{75}\\ =\sqrt{9\cdot3}-2\sqrt{3}+2\sqrt{16\cdot3}-3\sqrt{25\cdot2}\\ =3\sqrt{3}-2\sqrt{3}+8\sqrt{3}-15\sqrt{3}\\ =-6\sqrt{3}\)
5,
\(3\sqrt{2}-4\sqrt{18}+\sqrt{32}-\sqrt{50}\\ =3\sqrt{2}-4\sqrt{9\cdot2}+\sqrt{16\cdot2}-\sqrt{25\cdot2}\\ =3\sqrt{2}-12\sqrt{2}+4\sqrt{2}-5\sqrt{2}\\ =-10\sqrt{2}\)
6,
\(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\\ =2\sqrt{3}-\sqrt{25\cdot3}+2\sqrt{4\cdot3}-\sqrt{49\cdot3}\\ =2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\\ =-6\sqrt{3}\)
7,
\(\sqrt{20}-2\sqrt{45}-3\sqrt{80}+\sqrt{125}\\ =\sqrt{4\cdot5}-2\sqrt{9\cdot5}-3\sqrt{16\cdot5}+\sqrt{25\cdot5}\\ =2\sqrt{5}-6\sqrt{5}-12\sqrt{5}+5\sqrt{5}\\ =-11\sqrt{5}\)
8,
\(6\sqrt{12}-\sqrt{20}-2\sqrt{27}+\sqrt{125}\\ =6\sqrt{4\cdot3}-\sqrt{4\cdot5}-2\sqrt{9\cdot3}+\sqrt{25\cdot5}\\ =12\sqrt{3}-2\sqrt{5}-6\sqrt{3}+5\sqrt{5}\\ =6\sqrt{3}+3\sqrt{5}\\ =3\left(2\sqrt{3}+\sqrt{5}\right)\)
9,
\(4\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\\ =4\sqrt{4\cdot6}-2\sqrt{9\cdot6}+3\sqrt{6}-\sqrt{25\cdot6}\\ =8\sqrt{6}-6\sqrt{6}+3\sqrt{6}-5\sqrt{6}=0\)
10,
\(2\sqrt{18}-3\sqrt{80}-5\sqrt{147}+5\sqrt{245}-3\sqrt{98}\\ =2\sqrt{9\cdot2}-3\sqrt{16\cdot5}-5\sqrt{49\cdot3}+5\sqrt{49\cdot5}-3\sqrt{49\cdot2}\\ =6\sqrt{2}-12\sqrt{5}-35\sqrt{3}+35\sqrt{5}-21\sqrt{2}\\ =-15\sqrt{2}-35\sqrt{3}+23\sqrt{5}\)
Rút gọn các biểu thức
\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}} \)
\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(D=\frac{3\sqrt{8}-2\sqrt{12}+20}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\frac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
mik chỉnh lại đề
\(D=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)
\(=\frac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}=\frac{2}{3}\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\); \(a=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
Ta có: \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)
\(=\dfrac{2}{3}\)
Ta có: \(a=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
=2
Thay a=2 và \(b=\dfrac{2}{3}\) vào M, ta được:
\(M=\dfrac{1+2\cdot\dfrac{2}{3}}{2+\dfrac{2}{3}}-\dfrac{1-2\cdot\dfrac{2}{3}}{2-\dfrac{2}{3}}\)
\(=\dfrac{7}{8}+\dfrac{1}{4}\)
\(=\dfrac{7}{8}+\dfrac{2}{8}=\dfrac{9}{8}\)