c: Ta có: \(C=\left(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\right):\sqrt{48}\)
\(=\dfrac{4+2\sqrt{3}-4+2\sqrt{3}}{2}:4\sqrt{3}\)
\(=\dfrac{1}{2}\)
c: Ta có: \(C=\left(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\right):\sqrt{48}\)
\(=\dfrac{4+2\sqrt{3}-4+2\sqrt{3}}{2}:4\sqrt{3}\)
\(=\dfrac{1}{2}\)
B1: Tính:
a, \(\sqrt{72}\div\sqrt{8}\)
b, \((\sqrt{28}-\sqrt{7}+\sqrt{112})\div\sqrt{7}\)
B2: Tính:
a, \(\sqrt{\dfrac{49}{8}}\div\sqrt{3\dfrac{1}{8}}\)
b, \(\sqrt{54x}\div\sqrt{6x}\)
c, \(\sqrt{\dfrac{1}{125}}\times\sqrt{\dfrac{32}{35}}\div\sqrt{\dfrac{56}{225}}\)
giúp em với ạ , em cảm mơn
Tính:
a) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
b) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Tìm x, biết:
a) \(\sqrt{x^2-2x+1}=2\)
b)\(\sqrt{x^2-1}=x\)
c) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
d) \(x-5\sqrt{x-2}=-2\)
e) \(2x-3\sqrt{2x-1}-5=0\)
tính:
a) \(\sqrt{\dfrac{1}{8}}.\sqrt{2}.\sqrt{125}.\sqrt{\dfrac{1}{5}}\)
b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}\)
c) \(\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}\)
d) \(\sqrt{12-6\sqrt{3}}.\sqrt{\dfrac{1}{3-\sqrt{3}}}\)
e) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
f) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
g) \(\left(\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)\)
Tính:
a) \(\dfrac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b) \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
c) \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Mọi người giúp em với! Em cám ơn trước ạ.
bài 1 : giải pt
a,\(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\)
b, \(\dfrac{6}{x-4}=\sqrt{2}\)
c,\(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)
bài 2 : tính
a, \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
b,\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
c, \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
Bài 1: Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
a/C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) ; b/D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
Bài 2: Chứng minh
a/\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}=\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\) b/\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
1. Áp dụng quy tắc khai phương một thương, hãy tính:
a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\)
d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)
2. Tính:
a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) c,\(\sqrt{\dfrac{2,25}{16}}\) d, \(\sqrt{\dfrac{1,21}{0,49}}\)
3. Áp dụng quy tắc chia hai căn bậc hai, hãy tính:
a, \(\sqrt{18}:\sqrt{2}\) b, \(\sqrt{45}:\sqrt{80}\)
c, (\(\sqrt{20}-\sqrt{45}+\sqrt{5}\) ) : \(\sqrt{5}\) d, \(\dfrac{\sqrt{8^2}}{\sqrt{4^5.2^3}}\)
4. Khẳng định nào sau đây là đúng?
A. \(\sqrt{\dfrac{3}{\left(-5\right)^2}}=-\dfrac{\sqrt{3}}{5}\) B. \(\left(\sqrt{\dfrac{-3}{-5}}\right)^2=\dfrac{3}{5}\)
5. Tính.
a, \(\sqrt{2\dfrac{7}{81}}:\dfrac{\sqrt{6}}{\sqrt{150}}\) b, \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)
c, \(\left(\sqrt{\dfrac{1}{5}-\sqrt{\dfrac{9}{5}}+\sqrt{5}}\right):\sqrt{5}\) d, \(\sqrt{\dfrac{2+\sqrt{3}}{\sqrt{2}}}\)
6. So sánh
a, So sánh \(\sqrt{144-49}\) và \(\sqrt{144}-\sqrt{49}\);
b, Chứng minh rằng , với hai số a,b thỏa mãn a> b> 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
tính
1\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
2\(\left(2\sqrt{3}-3\right):5\sqrt{3}\)
3\(\left(2\sqrt{18}-3\sqrt{8}+6\right):\sqrt{2}\)
4\(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{15}\)
5\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\)