\(\left(1\right)=\sqrt{5}+\sqrt{3}\)
(2)=0,2=1/5
(3)=\(3\sqrt{2}\)
(4)=0,1678590144....
(5)\(\dfrac{a^2-b}{b}\)
\(\left(1\right)=\sqrt{5}+\sqrt{3}\)
(2)=0,2=1/5
(3)=\(3\sqrt{2}\)
(4)=0,1678590144....
(5)\(\dfrac{a^2-b}{b}\)
Tính : a)\(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}\)
b)\(\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)\)
c) \(\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\)
d)\(\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)\)b \(\ne\) 9 với a\(\ge\)0 , b\(\ge\)0, a\(\ne\) 4
Mọi người ai biết giúp tớ với ạ !! Mai tớ phải nộp rồi !! Cảm ơn mọi người trước !
Bài 1: Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
a/C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) ; b/D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
Bài 2: Chứng minh
a/\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}=\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\) b/\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
1. Áp dụng quy tắc khai phương 1 thương, tính:
\(\frac{3\sqrt{128}}{\sqrt{2}}\)
2. Tính:
a. \(\left(\sqrt{32}-\sqrt{50}+\sqrt{8}\right):\sqrt{2}\)
b. \(\left(5\sqrt{48}-3\sqrt{27}+2\sqrt{12}\right):\sqrt{3}\)
c. \(\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
f. \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
bài 1 : giải pt
a,\(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\)
b, \(\dfrac{6}{x-4}=\sqrt{2}\)
c,\(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)
bài 2 : tính
a, \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
b,\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
c, \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(\sqrt{3}×\sqrt{27}-\sqrt{144}:\sqrt{36}\)
\(\left(2\sqrt{9}+3\sqrt{36}\right):4\)
\(\sqrt{7}-\sqrt{8-2\sqrt{7}}\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
\(\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(\sqrt{27}+5\sqrt{12}-2\sqrt{3}=11\sqrt{3}\)
Tính:
A=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
B=\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
C=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D=\(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)(2 cách)
F=\(\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{3-2\sqrt{2}}}-\dfrac{\sqrt{17}+12\sqrt{2}}{\sqrt{3+2\sqrt{2}}}\)
Tính:
a) \(\dfrac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b) \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
c) \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Mọi người giúp em với! Em cám ơn trước ạ.
Thực hiện phép tính:
1)\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right)\)\(\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\dfrac{1}{5}}\right)\)
2) \(\left(\sqrt{12}+2\sqrt{27}\right)\dfrac{\sqrt{3}}{2}-\sqrt{150}\)
. Làm tính nhân :
a) \(\left(\sqrt{12}-3\sqrt{75}\right).\sqrt{3}\)
b) \(\left(\sqrt{18}-4\sqrt{72}\right).2\sqrt{2}\)
c) \(\left(\sqrt{6}-2\right)\left(\sqrt{6}+7\right)\)
d) \(\left(\sqrt{3}+2\right)\left(\sqrt{3}-5\right)\)
2 . Thực hiện phép tính :
a) \(\left(\sqrt{48}-\sqrt{27}+4\sqrt{12}\right):\sqrt{3}\)
b) \(\left(\sqrt{20}-3\sqrt{45}+6\sqrt{180}\right):\sqrt{5}\)
c) \(\left(2\sqrt{20}-3\sqrt{45}+4\sqrt{80}\right):\sqrt{5}\)
d) \(\left(3\sqrt{24}+4\sqrt{54}-5\sqrt{96}\right):\sqrt{6}\)
e) \(\left(\sqrt{x^2y}-\sqrt{xy^2}\right):\sqrt{xy}\)
f) \(\left(\sqrt{a^3b}+\sqrt{ab^3}-ab\right):\sqrt{ab}\)
g) \(\left(3\sqrt{x^2y}-4\sqrt{xy^2}+5xy\right):\sqrt{xy}\)
h) \(\left(\sqrt{a^3b}+\sqrt{ab^3}-3\sqrt{ab}\right):\sqrt{ab}\)