\(\left\{{}\begin{matrix}x+\sqrt{2}y=3\\-x+y=\sqrt{2}\end{matrix}\right.\)
giải hệ PT
giải hệ pt :
a,\(\left\{{}\begin{matrix}\sqrt{y}\left(\sqrt{x}+\sqrt{x+3}\right)=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2+x=y^2+y\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\)
a, ĐK: \(x,y\ge0\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3\sqrt{y}}{\sqrt{x+3}-\sqrt{x}}=3\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=\sqrt{x+3}\\\sqrt{x}+\sqrt{y}=x+1\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+3}=x+1\)
\(\Leftrightarrow x+3=x^2+2x+1\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)
Thay \(x=1\) vào hệ phương trình đã cho ta được \(y=1\)
Vậy pt đã cho có nghiệm \(x=y=1\)
b, \(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(y+\dfrac{1}{2}\right)^2\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\x^2+y^2=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-3x=0\end{matrix}\right.\left(1\right)\\\left\{{}\begin{matrix}x+y=-1\\x^2+y^2=-3\end{matrix}\right.\left(vn\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=0\end{matrix}\right.\)
Vậy ...
c, Đặt \(\left\{{}\begin{matrix}x^2+y^2=a\\xy=b\end{matrix}\right.\)
\(hpt\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a^2-b^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=7\\a-b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow\left(x+y\right)^2=9\)
\(\Rightarrow x+y=\pm3\)
TH1: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=-3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\end{matrix}\right.\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^2+y^2-xy\right)=70\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(16-2xy\right)\left(16-3xy\right)=70\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\3x^2y^2-40xy+93=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left[{}\begin{matrix}xy=\dfrac{31}{3}\\xy=3\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=4\\xy=\dfrac{31}{3}\end{matrix}\right.\)
Phương trình này vô nghiệm
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)
b, ĐK: \(xy>0\)
\(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{y}+\dfrac{2y}{x}+4=9\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+y^2\right)=5xy\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x-2y\right)=0\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\\x-y+xy=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}y=2x\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\2x^2-x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\\left(x+1\right)\left(2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=3\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x=2y\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2+y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
giải hệ pt \(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\left(1\right)\\x+\sqrt{3}y=\sqrt{2}\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)+\left(2\right):\)
\(\sqrt{2}x+x-\sqrt{3}y+\sqrt{3}y=1+\sqrt{2}\)
\(\Rightarrow\sqrt{2}x+x-\sqrt{2}-1=0\)
\(\Rightarrow x\left(1+\sqrt{2}\right)-\left(1+\sqrt{2}\right)=0\)
\(\Rightarrow\left(1+\sqrt{2}\right)\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Thay \(x=1\) vào \(\left(2\right):1+\sqrt{3}y=\sqrt{2}\)
\(\Rightarrow\sqrt{3}y=\sqrt{2}-1\)
\(\Rightarrow y=\dfrac{\sqrt{2}-1}{\sqrt{3}}\)
Vậy hệ pt có nghiệm duy nhất \( \left(x;y\right)=\left(1;\dfrac{\sqrt{2}-1}{\sqrt{3}}\right)\)
\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x=1+\sqrt{2}\\x+\sqrt{3}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+\sqrt{2}}{\sqrt{2}+1}=1\\x+\sqrt{3}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\1+\sqrt{3}y=\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{\sqrt{2}-1}{\sqrt{3}}\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất \(\left(x;y\right)=\left(1;\dfrac{\sqrt{2}-1}{\sqrt{3}}\right)\)
Giải hệ PT: \(\left\{{}\begin{matrix}x+\sqrt{\left(x+1\right)y}=2y-1\\\sqrt{2x+3}+\sqrt{y}=x^2-y\end{matrix}\right.\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-1\\y\ge0\end{matrix}\right.\)
Ta có : \(x+\sqrt{\left(x+1\right).y}=2y-1\)
\(\Leftrightarrow x+1+\sqrt{\left(x+1\right)y}-2y=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y}\right)\left(\sqrt{x+1}+2\sqrt{y}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{y}\left(1\right)\\\sqrt{x+1}+2\sqrt{y}=0\left(2\right)\end{matrix}\right.\)
Từ (2) ta có \(\left\{{}\begin{matrix}x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\) (tm)
Thử lại ta có (x;y) = (-1;0) là 1 nghiệm của hệ phương trình
Từ (1) ta có : x + 1 = y
Khi đó \(\sqrt{2x+3}+\sqrt{y}=x^2-y\)
\(\Leftrightarrow\sqrt{2x+3}+\sqrt{x+1}=x^2-x-1\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=x^2-x-6\)
\(\Leftrightarrow\dfrac{2x-6}{\sqrt{2x+3}+3}+\dfrac{x-3}{\sqrt{x+1}+2}=\left(x-3\right)\left(x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}=x+2\end{matrix}\right.\)
Với x = 3 => y = 4 (tm)
Với \(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}=x+2\)
Vì \(x\ge-1\) nên \(\dfrac{2}{\sqrt{2x+3}+3}\le\dfrac{1}{2};\dfrac{1}{\sqrt{x+1}+2}\le\dfrac{1}{2}\)
nên \(VT\le\dfrac{1}{2}+\dfrac{1}{2}=1\)
lại có \(VP\ge1\) khi x \(\ge-1\)
Dấu "=" xảy ra khi x = -1 => y = 0 (tm)
Vậy (x;y) = (-1;0) ; (3;4)
đk: \(\left\{{}\begin{matrix}x\ge-1\\y\ge0\\x^2>y\end{matrix}\right.\)
pt đầu \(\Leftrightarrow\sqrt{\left(x+1\right)y}=2y-x-1\)
\(\Rightarrow\left(x+1\right)y=4y^2+x^2+1+2x-4xy-4y\)
\(\Leftrightarrow x^2+4y^2-5xy+2x-5y+1=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-4y\right)+\left(x-y\right)+\left(x-4y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x-4y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=x+1\\x=4y-1\end{matrix}\right.\)
TH1: \(y=x+1\) thay vào pt thứ hai, ta được
\(\sqrt{2x+3}+\sqrt{x+1}=x^2-x-1\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=x^2-x-6\)
\(\Leftrightarrow\dfrac{2x-6}{\sqrt{2x+3}+3}+\dfrac{x-3}{\sqrt{x+1}+2}-\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2=0\end{matrix}\right.\)
TH1.1: \(x=3\Rightarrow y=x+1=4\) (nhận)
TH1.2:\(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2=0\) (chỗ này mai mình nghĩ tiếp)
TH2: \(x=4y-1\). Thay vào pt thứ hai, ta được
\(\sqrt{8y+1}+\sqrt{y}=16y^2-9y+1\)
\(\Leftrightarrow\left(\sqrt{8y+1}-1\right)+\sqrt{y}=16y^2-9y\)
\(\Leftrightarrow\dfrac{8y}{\sqrt{8y+1}+1}+\dfrac{y}{\sqrt{y}}-16y^2+9y=0\)
\(\Leftrightarrow y\left(\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9=0\end{matrix}\right.\)
TH2.1: \(y=0\) \(\Rightarrow x=4y-1=-1\) (nhận)
TH2.2: \(\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9=0\)
(đoạn này để mai mình nghĩ tiếp nhé, ta tìm được các nghiệm \(\left(x;y\right)=\left(-1;0\right);\left(3;4\right)\))
giải hệ pt:
(1)\(\left\{{}\begin{matrix}2\text{x}+2y+2\text{x}y=10\\x^2+y^2=5\end{matrix}\right.\)
(2)\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=3\\\sqrt{xy}=2\end{matrix}\right.\)
(3)\(\left\{{}\begin{matrix}x-y=1\\x.y=6\end{matrix}\right.\)
(4)\(\left\{{}\begin{matrix}|x|+y=3\\2|x|-y=3\end{matrix}\right.\)
Câu 1 \(\left\{{}\begin{matrix}2x+2y+2xy=10\left(1\right)\\x^2+y^2=5\left(2\right)\end{matrix}\right.\)
=>2.(2) - (1)=\(\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)
<=>\(\left\{{}\begin{matrix}x-1=0\\y-1=0\\x-y=0\end{matrix}\right.\) =>x=y=1
Câu 2 dùng vi-et đảo
Câu 3 rút x=y+1 từ pt trên rồi thế xuống dưới
Câu 4 lấy pt trên cộng pt dưới rồi xét dấu GTTĐ
Giải hệ pt:
a)\(\left\{{}\begin{matrix}x-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}-x-\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+2y=-\sqrt{6}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(1-\sqrt{3}\right)x+2y=1-\sqrt{3}\\\left(1-\sqrt{3}\right)x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\sqrt{3}\\x=1+\left(1+\sqrt{3}\right)\cdot\left(-\sqrt{3}\right)=-2-\sqrt{3}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}-x-\sqrt{2}y=\sqrt{3}\\x+\sqrt{2}y=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\in R\\x=-\sqrt{3}-y\sqrt{2}\end{matrix}\right.\)
Giải hệ pt:
\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=1\\\sqrt{x^2+3}+\sqrt{y^2+3}=4\end{matrix}\right.\)
giải hệ pt :
\(\left\{{}\begin{matrix}\left(x+\sqrt{x^2+4}\right)\left(y+\sqrt{y^2+1}\right)=1\\27x^6=x^3-8y+2\end{matrix}\right.\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=6\\\sqrt{x}-\sqrt{y}=4,5\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\)
1) Ta có: \(\left\{{}\begin{matrix}3\sqrt{x}-\sqrt{y}=5\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}-3\sqrt{y}=15\\2\sqrt{x}+3\sqrt{y}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11\sqrt{x}=33\\3\sqrt{x}-\sqrt{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=3\\\sqrt{y}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=9\\y=16\end{matrix}\right.\)
2) Ta có: \(\left\{{}\begin{matrix}\sqrt{x+3}-2\sqrt{y+1}=2\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{x+3}+4\sqrt{y+1}=-4\\2\sqrt{x+3}+\sqrt{y+1}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y+1}=0\\\sqrt{x+3}-2\sqrt{y+1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y+1}=0\\\sqrt{x+3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+1=0\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
4. Đk: \(x,y\ge0\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}=1\\\sqrt{y}+\sqrt{x+1}=1\end{matrix}\right.\left(1\right)\)
Ta có: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y+1}\ge0+1=1\\\sqrt{y}+\sqrt{x+1}\ge0+1=1\end{matrix}\right.\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=0,\sqrt{x+1}=1\\\sqrt{y}=0,\sqrt{y+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)<tmđk>
Vậy hệ pt có nghiệm \(\left(x,y\right)=\left(0;0\right)\)
Giải hệ pt : \(\left\{{}\begin{matrix}\sqrt{x^2-\left(x+y\right)}=\frac{y}{\sqrt[3]{x-y}}\\2\left(x^2+y^2\right)-3\sqrt{2x-1}=11\end{matrix}\right.\)