Giải hpt :
\(\left\{{}\begin{matrix}2x-y=1-2y\\3x+y=3-x\end{matrix}\right.\)
giải hpt bằng phương pháp thế:
9) \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}2x+3y=2\\4x-y-1=0\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-2y=3\\2x-\dfrac{4}{3}y=1\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}5x+y=3\\2x+0,4y=1,2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
9: \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\2x+3y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4\\6x+9y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11y=-14\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{14}{11}\\x=\dfrac{y+2}{3}=\dfrac{\dfrac{14}{11}+2}{3}=\dfrac{12}{11}\end{matrix}\right.\)
\(9,\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\2x+3\left(3x-2\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\11x=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{11}\\y=\dfrac{14}{11}\end{matrix}\right.\)
\(10,\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\2\left(2-3y\right)-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\4-6y-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{14}\\y=\dfrac{3}{7}\end{matrix}\right.\)
10. giải hpt bằng phương pháp thế:
6) \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\)
7) \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\)
8) \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\)
9) \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}2x+3y=2\\4x-y-1=0\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-2y=3\\2x-\dfrac{4}{3}y=1\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}5x+y=3\\2x+0,4y=1,2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y
(Các câu khác tương tự nhé.)
Giải hpt sau:
a) \(\left\{{}\begin{matrix}\sqrt{5}x+\left(1-\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+\sqrt{5}y=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\frac{3x}{x+1}-\frac{2y}{y+4}=4\\\frac{2x}{x+1}-\frac{5y}{y+4}=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\frac{2}{2x-y}+\frac{3}{x-2y}=\frac{1}{2}\\\frac{2}{2x-y}-\frac{1}{x-2y}=\frac{1}{18}\end{matrix}\right.\)
giải hpt sau
\(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y^2+18y+9+y^2-6y-6-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}10y^2+10y-20=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y^2+y-2=0\\x=3y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(y+2\right)\left(y-1\right)=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\in\left\{-2;1\right\}\\x=3y+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;-2\right);\left(6;1\right)\right\}\)
a: \(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y=4x-6\\3x^2+6xy-x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{9}x-\dfrac{2}{3}\\3x^2+6x\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)-x+3\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x^2+\dfrac{8}{3}x^2-4x-x+\dfrac{4}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{17}{3}x^2-\dfrac{11}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x^2-11x-6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(17x+6\right)=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}17x+6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=\dfrac{4}{9}\cdot1-\dfrac{2}{3}=\dfrac{4}{9}-\dfrac{2}{3}=-\dfrac{2}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{6}{17}\\y=\dfrac{4}{9}\cdot\dfrac{-6}{17}-\dfrac{2}{3}=\dfrac{-14}{17}\end{matrix}\right.\end{matrix}\right.\)
mọi người ơi, giúp em giải hpt này với ạ.
\(\left\{{}\begin{matrix}2x-y=1-2y\\3x+y=3-x\end{matrix}\right.\)
Giải HPT
\(\left\{{}\begin{matrix}xy^2+3x^2=2y\\x^2y+y^2=-2x\end{matrix}\right.\)
giải hpt:
1,\(\left\{{}\begin{matrix}3x-y^2-2\sqrt{\left(x-2\right)\left(y+1\right)}=-5\\-2x+y^2+y=6\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y=4x\\x^4+y^2=2x^2y+y-4\end{matrix}\right.\)
1/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le2\\y\le-1\end{matrix}\right.\)
Cộng vế với vế ta được:
\(x-2+y+1-2\sqrt{\left(x-2\right)\left(y+1\right)}=0\) (1)
- Nếu \(\left\{{}\begin{matrix}x\ge2\\y\ge-1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(\sqrt{x-2}-\sqrt{y+1}\right)^2=0\Rightarrow\sqrt{x-2}=\sqrt{y+1}\Leftrightarrow x=y+3\)
Thay vào pt dưới:
\(-2\left(y+3\right)+y^2+y=6\Leftrightarrow y^2-y-12=0\Rightarrow\left\{{}\begin{matrix}y=4\\x=7\end{matrix}\right.\)
- Nếu \(\left\{{}\begin{matrix}x\le2\\y\le-1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2-x+\left(-y-1\right)+2\sqrt{\left(2-x\right)\left(-y-1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{2-x}+\sqrt{-y-1}\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}2-x=0\\-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Thay vào pt dưới ta thấy ko thỏa mãn \(\Rightarrow\) loại
Vậy hệ có cặp nghiệm duy nhất \(\left(x;y\right)=\left(7;4\right)\)
2/ \(x^4+2x^2y+y^2=4x^2y+y-4\Leftrightarrow\left(x^2+y\right)^2=4x^2y+y-4\)
Thay pt trên vào dưới:
\(16x^2=4x^2y+y-4\Leftrightarrow4x^2\left(y-4\right)+y-4=0\)
\(\Leftrightarrow\left(y-4\right)\left(4x^2+1\right)=0\Leftrightarrow y-4=0\)
\(\Rightarrow y=4\Rightarrow x^2+4=4x\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy hệ có cặp nghiệm duy nhất: \(\left(x;y\right)=\left(2;4\right)\)
Giải hệ phương trình sau bằng cách cộng hệ số
1) \(\left\{{}\begin{matrix}x-y=5\\2x+y=11\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}3x+2y=1\\3x+y=2\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-y=2\\3x+2y=11\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=y+5\\2y+10+y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{16}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}3x=1-2y\\1-2y+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\3y+6+2y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
b) Ta có hpt <=> \(\left\{{}\begin{matrix}2\sqrt{x}-3y+2=-4z^2\\2\sqrt{3x}+4y-2=6z^2\\-3\sqrt{x}+y-4=-2z^2\end{matrix}\right.\)
cộng 3 vế của 3 pt, ta có \(\left(2\sqrt{3}-1\right)\sqrt{x}=4\Leftrightarrow\sqrt{x}=\dfrac{4}{2\sqrt{3}-1}\Leftrightarrow x=\dfrac{16}{\left(2\sqrt{3}-1\right)^2}\)
đến đây thay căn(x)=...vào và đặt z^2=m, ta sẽ ra 1 hệ mới chỉ có 2 ẩn y và m bậc 1 , lát thế vào sẽ ra bậc 2 thì dễ rồi !