Cho a+b+c=0 và \(a^2+b^2+c^2=1\).Tính giá trị của biểu thức M=\(a^4+b^4+c^4\)
Cho a+b+c=0 và a^2+b^2+c^2=1. Tính giá trị của biểu thức: M=a^4+b^4+c^4
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)
hay \(ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)
Ta có: \(M=a^4+b^4+c^4\)
\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy: \(M=\dfrac{1}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )
\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )
\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy ...
Cho a + b + c = 0 va a^2 + b^2 + c^2 = 1
Tính giá trị của biểu thức A = a^4 + b^4 + c^4
(a2+b2+c2)2=196(a2+b2+c2)2=196
a4+b4+c4+2(a2b2+b2c2+c2a2)=196(1)a4+b4+c4+2(a2b2+b2c2+c2a2)=196(1)
ta lại có a+b+c)^2=0a2+b2+c2=−2(ab+bc+ca)=14a2+b2+c2=−2(ab+bc+ca)=14(ab+bc+ca)2=49(ab+bc+ca)2=49
a2b2+b2c2+c2a2+2abc(a+b+c)=49a2b2+b2c2+c2a2+2abc(a+b+c)=49
a2b2+b2c2+c2a2=49(2)a2b2+b2c2+c2a2=49(2)
Từ (1);(2)a4+b4+c4=196−49.2=98
bạn ghi tùm lum ko hiểu j hết ghi lại được ko
Chia thành nhiều bước để tinh nha ban
Bước 1:a+b+c=0
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca=0
1+2(ab+bc+ca)=0
2(ab+bc+ca)=-1
ab+bc+ca=-1/2
Bước 2 :(ab+bc+ca)^2=1/4
=a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1/4
=a^2b^2+b^2c^2+c^2+a^2+2abc(a+b+c)=1/4
=a^2b^2+b^2c^2+c^2a^2+2abc.0
=a^2b^2+b^2c^2+c^2a^2
=>(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2=1/4
Bước 3:(a^2+b^2+c^2)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2
=a^4+b^4+c^4+2(a^2b^2+b62c^2+c^2a^2)=1
=a^4+b^4+c^4+2.1/4=1
=>a^4+b^4+c^4+1/2=1
=>a^4+b^4+c^4=1/2
Cho các số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2. Tính giá trị của biểu thức P=a^4+b^4+c^4
Cho a+b+c=0 và a2 + b2 + c2 =1 . Tính giá trị biểu thức M=a4+b4+c4.
Có: \(a^2+b^2+c^2=1\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=1\)
\(\Rightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
Lại có: \(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow2\left(ab+bc+ac\right)=-1\)
\(\Rightarrow ab+bc+ac=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ac\right)^2=\left(-\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2+2a^2bc+2ab^2c+2abc^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}-2abc\left(a+b+c\right)\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}\)
Vậy: \(a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=1-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
Bài 5:
Cho a+b+c=0 và a2+b2+c2 Tính giá trị của biểu thức M=a4+b4+c4
\(a+b+c=0=>a+b=-c=>\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2\)
\(=>a^2+2ab+b^2-c^2=0=>a^2+b^2-c^2=-2ab\)\(=>\left(a^2+b^2-c^2\right)^2=\left(-2ab\right)^2\)
\(=>a^4+b^4+c^4+2a^2b^2-2b^2c^2-2a^2c^2=4a^2b^2\)
\(=>a^4+b^4+c^4=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2\right)\)\(=2a^2b^2+2b^2c^2+2a^2c^2\)
\(=>2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=\left(a^2+b^2+c^2\right)^2=1^2\)\(=1\)
\(=>M=a^4+b^4+c^4=\frac{1}{2}\)
Ta có: \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+2ab+b^2-c^2=0\)
\(\Rightarrow a^2+b^2-c^2=-2ab\)
\(\Rightarrow\left(a^2+b^2-c^2\right)^2=\left(-2ab\right)^2\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2-2b^2c^2-2a^2c^2=4a^2b^2\)
\(\Rightarrow a^4+b^4+c^4=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2\right)=2a^2b^2+2b^2c^2+2a^2c^2\)\(\Rightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=\left(a^2+b^2+c^2\right)^2=1^2\)\(\Rightarrow2\left(a^4+b^4+c^4\right)=1\)
\(\Rightarrow a^4+b^4+c^4=\dfrac{1}{2}\)
Vậy \(a^4+b^4+c^4=\dfrac{1}{2}\)
1. Cho a+b+c=0 và a2+b2+c2=14
Tính giá trị của biểu thức A=a4+b4+c4
Ta có a + b + c = 0
=> a + b = -c
=> (a + b)2 = (-c)2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = -2ab
=> (a2 + b2 - c2)2 = (-2ab)2
=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2
Khi đó a2 + b2 + c2 = 14
<=> (a2 + b2 + c2)2 = 142
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196
=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)
=> 2(a4 + b4 + c4) = 196
=> a4 + b4 + c4 = 98
Cho 3 số a,b,c thỏa mãn a+b+c=0; a^2 + b^2+c^2=14
tính giá trị của biểu thức: M=a^4 +b^4 + c^4
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc +2ca=0\)
\(\Leftrightarrow2ab+2bc+2ca=-14\)
\(\Leftrightarrow ab+bc+ca=-7\)
\(\Rightarrow\left(ab+bc+ca\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\).
\(a^2+b^2+c^2=14\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=14^2=196\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)
\(\Leftrightarrow a^4+b^4+c^4+2.49=196\)
\(\Leftrightarrow a^4+b^4+c^4=98\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-7\)
Suy ra : \(\left(ab+bc+ac\right)^2=49\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
\(a^2+b^2+c^2=14\Leftrightarrow\left(a^2+b^2+c^2\right)^2=196\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)
\(\Leftrightarrow a^4+b^4+c^4+2.49=256\) \(\Leftrightarrow a^4+b^4+c^4=98\)
Vậy ...
Cho a+b+c=0;a2+b2+c2=1.Tính giá trị biểu thức M=a4+b4+c4
Từ \(a+b+c=0=>a+b=-c=>\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2\)
\(=>a^2+2ab+b^2-c^2=0=>a^2+b^2-c^2=-2ab\)
\(=>\left(a^2+b^2-c^2\right)^2=\left(-2ab\right)^2=>a^4+b^4+c^4+2a^2b^2-2b^2c^2-2a^2c^2=4a^2b^2\)
\(=>a^4+b^4+c^4=4a^2b^2-\left(2a^2b^2-2b^2c^2-2a^2c^2\right)=2a^2b^2+2b^2c^2+2a^2c^2\)
\(=>2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2\)
\(=>2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2=1^2=1=>a^4+b^4+c^4=\frac{1}{2}\)
Cho a+b+c = 0 và a2+b2+c2 = 1
Tính giá trị của biểu thức A= a4+b4+c4
Cho a+b+c = 0 và a2+b2+c2 = 1
Tính giá trị của biểu thức A= a4+b4+c4
em có thể vào mục câu hỏi tương tự! có nhiều
Ta có: \(a+b+c=0
\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Leftrightarrow1+2ab+2ac+2bc=0\)
\(\Leftrightarrow ab+ac+bc=-\frac{1}{2}\)
\(\Leftrightarrow\left(ab+ac+bc\right)^2=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}\) Vì ( a+b+c=0)
Mặt khác: \(a^2+b^2+c^2=1\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4+2.\frac{1}{4}=1
\)
\(\Leftrightarrow a^4+b^4+c^4=1-\frac{1}{2}=\frac{1}{2}\)