Những câu hỏi liên quan
Serena chuchoe
Xem chi tiết
Lightning Farron
2 tháng 8 2017 lúc 12:01

Nice proof, nhưng đã quy đồng là phải thế này :v

\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)

\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)

\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)

Bình luận (1)
Lightning Farron
2 tháng 8 2017 lúc 13:41

Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:

\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)

Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)

Áp dụng BĐT này ta có:

\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)

Bình luận (0)
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 13:57

Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại

Ta có:

\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Mặt khác:

\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)

\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)

\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)

\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)

Đúng theo AM-GM:

\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

Bình luận (0)
khong có
Xem chi tiết
missing you =
17 tháng 11 2021 lúc 20:05

\(S=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

\(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{17}}\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(1+4^2\right)}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\left(1\right)\)\(\left(bunhia\right)\)

\(tương-tự\Rightarrow\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\left(2\right)\)

\(\sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}+b+\dfrac{4}{c}+c+\dfrac{4}{a}\right)\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left[16a+\dfrac{4}{a}+16b+\dfrac{4}{b}+16c+\dfrac{4}{c}-15\left(a+b+c\right)\right]\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left[2\sqrt{16a.\dfrac{4}{a}}+2\sqrt{16b.\dfrac{4}{b}}+2\sqrt{16c.\dfrac{4}{c}}-15.\dfrac{3}{2}\right]\left(am-gm\right)\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left(16+16+16-\dfrac{45}{2}\right)=\dfrac{3\sqrt{17}}{2}\)

\(\Rightarrow MinS=\dfrac{3\sqrt{17}}{2}\Leftrightarrow a=b=c=\dfrac{1}{2}\)

 

 

 

Bình luận (0)
Kimian Hajan Ruventaren
Xem chi tiết
Akai Haruma
29 tháng 1 2021 lúc 0:30

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)

Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:

$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$

$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.

Áp dụng BĐT AM-GM:

\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)

\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)

\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)

\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)

Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$

 

Bình luận (0)
Akai Haruma
29 tháng 1 2021 lúc 0:31

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)

Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:

$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$

$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.

Áp dụng BĐT AM-GM:

\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)

\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)

\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)

\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)

Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$

 

Bình luận (0)
Phan Cả Phát
Xem chi tiết
Dong tran le
5 tháng 1 2018 lúc 17:26

Áp dụng BĐT phụ:

\(3\left(a^2+a^2+b^2\right)\ge\left(2a+b\right)^2\)

P=\(\sum\dfrac{a}{\sqrt{2a^2+b^2}+\sqrt{3}}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P=\sum\dfrac{a}{\sqrt{3\left(a^2+a^2+b^2\right)}+3}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\sum\dfrac{a}{\sqrt{\left(2a+b\right)^2}+a+b+c}=\sum\dfrac{a}{3a+2b+c}\)

Xét M=\(\sum\dfrac{a}{3a+2b+c}\)

\(3-3M=\sum\dfrac{2b+c}{3a+2b+c}\)

\(\Rightarrow\)\(3-3M=\sum\dfrac{\left(2b+c\right)^2}{\left(3a+2b+c\right)\left(2b+c\right)}\ge\)\(\dfrac{\left(3a+3b+3c\right)^2}{\sum\left(3a+2b+c\right)\left(2b+c\right)}\)

\(\sum\left(3a+2b+c\right)\left(2b+c\right)=5a^2+5b^2+5c^2+13ab+13bc+13ac=5\left(a+b+c\right)^2+3\left(ab+bc+ac\right)\le5\left(a+b+c\right)^2+\left(a+b+c\right)^2\)

\(\Rightarrow\)\(3-3M\ge\dfrac{\left(3a+3b+3c\right)^2}{6\left(a+b+c\right)^2}\ge\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrow\)\(M\le\dfrac{1}{2}\)

\(\Rightarrow\)\(\dfrac{1}{\sqrt{3}}P\le\dfrac{1}{2}\Rightarrow P\le\dfrac{\sqrt{3}}{2}\)

Bình luận (0)
Dong tran le
5 tháng 1 2018 lúc 17:28

Dấu \(=\) xảy ra khi và chỉ khi x=y=z=1

Bình luận (0)
Nguyễn Đức Thịnh
Xem chi tiết
Lightning Farron
31 tháng 3 2017 lúc 20:29

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

Bình luận (0)
soyeon_Tiểubàng giải
31 tháng 3 2017 lúc 20:54

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

Bình luận (6)
Anh Tú Dương
24 tháng 9 2019 lúc 17:35

Ai lm dc bai 3 chua

Bình luận (1)
Vũ Đình Thái
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 3 2021 lúc 21:06

Đặt \(\left(a;b;c\right)=\left(x^4;y^4;z^4\right)\Rightarrow xyz=1\)

\(VT=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(VT=\dfrac{1}{x^2+y^2+y^2+1+2}+\dfrac{1}{y^2+z^2+z^2+1+2}+\dfrac{1}{z^2+x^2+x^2+1+2}\)

\(VT\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
dia fic
Xem chi tiết
Hải Anh
27 tháng 12 2020 lúc 9:59

c=c.1 thay 1 bằng a+b+c xong cô si

 

Bình luận (0)
missing you =
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2021 lúc 10:06

Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn

Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng

Bình luận (2)
missing you =
28 tháng 6 2021 lúc 10:11

em cũng nghĩ thế mới dùng đc BDT AM-GM 3 số đúng ko thầy :)

Bình luận (1)