4x\(^2\)+4x+1
\(\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
Ta có: \(\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
\(=\sqrt{\left(2x-1\right)^2}-\sqrt{\left(2x+1\right)^2}\)
\(=\left|2x-1\right|-\left|2x+1\right|\)
`c)(2x-1)^{2}+(1-x).3x<=(x+2)^{2}`
`<=>>4x^{2}-4x+1+3x-3x^{2}<=x^{2}+4x+4`
`<=>x^{2}-x+1<=x^{2}+4x+4`
`<=>4x+x>=1-4`
`<=>5x>=-3`
`<=>x>=-3/5`
thứ nhất bn đăng sai môn
thứ hai bn giải r đăng lmj :???
Thứ nhất đang sai môn
Thứ hai không biết giải fndf]-0jhdfuhiofghjfgoihjfgopihjfgihjohjgo;hjghghgdjhldhjdfighjs;dligjlkdfgjdhfghfgh41fg6j541fg3j5h4gf6j54dgh65gf4654j
5gj5fg
35j4gh
6jfd4
5j4fj
phân tích đa thức thành nhân tử
1. 4x^2-4x+1
2. 4x^2-4x-3
\(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\\ ---\\ 4x^2-4x-3\\ =4x^2-4x+1-4\\ =\left(2x-1\right)^2-2^2=\left(2x-1-2\right)\left(2x-1+2\right)\\ =\left(2x-3\right)\left(2x+1\right)\)
1: =(2x)^2-2*2x*1+1^2
=(2x-1)^2
2: =4x^2-6x+2x-3
=2x(2x-3)+(2x-3)
=(2x-3)(2x+1)
1 Rút gọn biểu thức
(4x+1)^2+(4x-1)^2-2(4x+1)(4x-1)
2 Phân tích đa thức thành nhân tử
4x^2-9+(2x+3)
1) ( 4x + 1 )2 + ( 4x - 1 )2 - 2( 4x + 1 ).( 4x - 1 )
= ( 4x + 1 - 4x - 1 )2
= 22
= 4
2) 4x2 - 9 + ( 2x + 3 )
= ( 2x )2 - 32 + ( 2x + 3 )
= ( 2x + 3 ).( 2x - 3 ) + ( 2x + 3 )
= ( 2x + 3 ). ( 2x - 3 + 1 )
= ( 2x + 3 ) .( 2x - 2 )
= 2.( 2x + 3 ) .( x - 1 )
1, (4x+1)^2 + (4x-1)^2 - 2(4x+1)(4x-1)
=[(4x+1)-(4x-1)]^2
=(4x+1-4x+1)^2
=2^2
=4
2, 4x^2 - 9 +(2x+3)
=(4x^2 - 9)+(2x+3)
=(2x+3)(2x-3)+(2x+3)
=(2x+3)(2x-3+1)
=(2x+3)(2x-2)
=2(x-1)(2x+3)
=.= hok tốt!!
rút gọn biểu thức
(4x+1)^2+(4x-1)^-2(4x+1)(4x-1)
a, Vẽ đồ thị hàm số y= \(\sqrt{4x^2-4x+1}\) + \(\sqrt{x^{2^{ }}-4x+4}\)
b, Biện luận theo m số nghiệm của phương trình:
\(\sqrt{4x^{2^{ }}-4x+1}\)+ \(\sqrt{x^{2^{ }}-4x+4}\) = m
\(y=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(x-2\right)^2}=\left|2x-1\right|+\left|x-2\right|\)
\(y=\left[{}\begin{matrix}3x-3\left(\text{với }x\ge2\right)\\3-3x\left(\text{với }x\le\dfrac{1}{2}\right)\\x+1\left(\text{với }\dfrac{1}{2}\le x\le2\right)\end{matrix}\right.\)
Từ đó ta có đồ thị hàm số như sau:
Từ đồ thị ta thấy phương trình \(\sqrt{4x^2-4x+1}+\sqrt{x^2-4x+4}=m\):
- Có đúng 1 nghiệm khi \(m=\dfrac{3}{2}\)
- Có 2 nghiệm phân biệt khi \(m>\dfrac{3}{2}\)
- Vô nghiệm khi \(m< \dfrac{3}{2}\)
1.\(\sqrt{x^2-4x+3}=x-2\)
2.\(\sqrt{4x^2-4x+1}=x-1\)
3. \(2x-\sqrt{4x-1}=0\)
4. \(x-2\sqrt{x-1}=16\)
1. \(\sqrt{x^2-4x+3}=x-2\)
<=> x2 - 4x + 3 = (x - 2)2
<=> x2 - 4x + 3 = x2 - 4x + 4
<=> x2 - x2 - 4x + 4x = 1
<=> 0 = 1 (Vô lí)
vậy PT có nghiệm là S = \(\varnothing\)
2. \(\sqrt{4x^2-4x+1}=x-1\)
<=> \(\sqrt{\left(2x-1\right)^2}=x-1\)
<=> 2x - 1 = x - 1
<=> 2x - x = -1 + 1
<=> x = 0
1: ta có: \(\sqrt{x^2-4x+3}=x-2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\)(vô lý)
2: Ta có: \(\sqrt{4x^2-4x+1}=x-1\)
\(\Leftrightarrow\left(2x-1-x+1\right)\left(2x-1+x-1\right)=0\)
\(\Leftrightarrow x\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)
( 4x^2 +4x +1/ 4x^2 -1 ) - ( 2/2x-1) -3
\(\dfrac{4x^2+4x+1}{4x^2-1}-\dfrac{2}{2x-1}-3\)
\(=\dfrac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\dfrac{2}{2x-1}-3\)
\(=\dfrac{2x+1}{2x-1}-\dfrac{2}{2x-1}-\dfrac{3\left(2x-1\right)}{2x-1}\)
\(=\dfrac{2x+1-2-6x+3}{2x-1}\)
\(=\dfrac{-4x+2}{2x-1}\)
\(=\dfrac{-2\left(2x-1\right)}{2x-1}=-2\)
Cho biểu thức B= \(\sqrt{4x-2\sqrt{4x-1}}\)\(+\sqrt{4x+2\sqrt{4x-1}}\)\(với\dfrac{1}{4}\le x\le\dfrac{1}{2}\)
Tìm GTNN
B= (4x^2 - 6x +1)/(4x^2-4x+1)
Đề bài ko chính xác
Biểu thức này chỉ có GTLN, không có GTNN