(2x-1)2 = 64
(2x-3)3 = -64
(2x-3)2 =25
(3x-4)2 =36
2x+1 = 64
a, (2x-3)3 = -64
=> (2x-3)3 = -43
=> 2x-3=-4
=> 2x = -1
=> x = -1 : 2
=> x = -1/2
b, (2x-3)2 =25
=> (2x-3)2 =5^2
=> 2x-3 = 5
=> 2x = 8
=> x = 4
c, (3x-4)2 =36
=> (3x-4)2 =62
=> 3x-4 = 6
=> 3x = 10
=> x = 3.(3)
d, 2x+1 = 64
=> 2x+1 = 26
=> x+1 = 6
=> x = 5
a/ (2x - 3)3 = -64 => (2x - 3)3 = (-4)3 => 2x - 3 = -4 => 2x = -1 => x = -1/2
b/ (2x - 3)2 = 25 => (2x - 3)2 = 52 => 2x - 3 = 5 => 2x = 8 => x = 4
c/ (3x - 4)2 = 36 => (3x - 4)2 = 62 => 3x - 4 = 6 => 3x = 10 => x = 10/3
d/ 2x+1 = 64 => 2x+1 = 26 => x + 1 = 6 => x = 5
tìm x biết
x-3=(3-x)^2
x^3+3/2x^2+3/4x+1/8=1/64
\(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow x-3=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
___________
\(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot\dfrac{1}{2}\cdot x^2+3\cdot\left(\dfrac{1}{2}\right)^2\cdot x+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
tìm nghiệm đa thức x^2 - 64 . 1/2x + 3
tìm x biết
a)(x+5^3)=-64
b)(2x-3^2)=9
C)(1\2)^2x-1=1\8
A)2^x-1=64 b)3^2x-10=81 c)2^2x+3=1024 d) 618-3^x+1=24.5^2
a, 2x-1 = 64
=> 2x-1 = 26
=> x - 1 = 6
=> x = 6 + 1
=> x = 7
b, 32x-10 = 81
=> 32x-10 = 34
=> 2x - 10 = 4
=> 2x = 14
=> x = 7
c, 22x+3 = 1024
=> 22x+3 = 210
=> 2x + 3 = 10
=> 2x = 7
=> x = \(\frac{7}{2}\)
BT2: Tính giá trị biểu thức
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)tại \(x=1\)
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)tại \(x=10\)
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)
\(M=\left(7-2x\right)\left[\left(2x\right)^2+2x\cdot7+7^2\right]-\left(64-8x^3\right)\)
\(M=\left[7^3-\left(2x\right)^3\right]-\left(64-8x^3\right)\)
\(M=343-8x^3-64+8x^3\)
\(M=279\)
Vậy M có giá trị 279 với mọi x
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)
\(P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3\)
\(P=16x^3-8x^2+4x-2\)
Thay \(x=10\) vào P ta có:
\(P=16\cdot10^3-8\cdot10^2+4\cdot10-2=15238\)
Vậy P có giá trị 15238 tại x=10
a: M=343-8x^3-64+8x^3=279
b: P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3
=16x^3-8x^2+4x-2
=16*10^3-8*10^2+4*10-2=15238
|x^8-1|+|x^8-64|=63-X^2+2X
c) ( 2x - 1)6 = 642
\(\left(2x-1\right)^6=64^2\)
\(\Leftrightarrow\left(2x-1\right)^6=4^6\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=4\\2x-1=-4\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-\frac{3}{2}\end{array}\right.\)
\(\left(2x-1\right)^6=64^2\)
\(\Rightarrow\left(2x-1\right)^6=4^6\)
\(\Rightarrow2x-1=\pm4\)
+) \(2x-1=4\Rightarrow x=\frac{5}{2}\)
+) \(2x-1=-4\Rightarrow x=\frac{-3}{2}\)
Vậy \(x=\frac{5}{2}\) hoặc \(x=\frac{-3}{2}\)
(2x-1)6 = 642
<=> (2x-1)6 = 46
<=> 2x -1 = 4
<=> 2x = 5
<=> x = \(\frac{5}{2}\)
Tìm x biết
2x/15+2x/35+2x/63+....+2x/195=4/5
Chứng minh rằng 1/2-1/4+1/8-1/16+1/32-1/1/64<1/3
\(\dfrac{2x}{15}+\dfrac{2x}{35}+\dfrac{2x}{63}+...+\dfrac{2x}{195}=\dfrac{4}{5}\\ x\cdot\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{195}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{13\cdot15}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{1}{3}-\dfrac{1}{15}\right)=\dfrac{4}{5}\\ x\cdot\dfrac{4}{15}=\dfrac{4}{5}\\ x=\dfrac{4}{5}:\dfrac{4}{15}\\ x=3\)
Gọi \(D=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
\(2D=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\\ 2D+D=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\\ 3D=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\\ 3D=1-\dfrac{1}{64}< 1\\ \Rightarrow D=\dfrac{1-\dfrac{1}{64}}{3}< \dfrac{1}{3}\)
Vậy \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)