(1-\(\dfrac{1}{2}\)).(1-\(\dfrac{1}{3}\)).(1-\(\dfrac{1}{4}\))...(1-\(\dfrac{1}{199}\))
Chứng minh
\(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{199\cdot200}< \dfrac{1}{2}\)
Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{199\cdot200}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\dfrac{1}{2}-\dfrac{1}{200}\)
\(=\dfrac{100-1}{200}=\dfrac{99}{200}< \dfrac{100}{200}=\dfrac{1}{2}\)(đpcm)
Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{199\cdot200}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\cdot\cdot\cdot+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\dfrac{1}{2}-\dfrac{1}{200}< \dfrac{1}{2}\) (Đpcm)
Chứng minh rằng :
a) \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}=\dfrac{1}{101}\)+ \(\dfrac{1}{102}+...+\dfrac{1}{200}\)
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{199}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+..+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{200}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{199}+\dfrac{1}{200}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)\)
\(=\dfrac{1}{101}+...+\dfrac{1}{199}+\dfrac{1}{200}\)
tính
A=\(\dfrac{\dfrac{1}{199}+\dfrac{1}{198}+.....+\dfrac{1}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{200}}\)
Tính \(\dfrac{A}{B}\) biết rằng:
A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{200}\)
B = \(\dfrac{1}{199}+\dfrac{2}{198}+\dfrac{3}{197}+...+\dfrac{198}{2}+\dfrac{199}{1}\)
Giúp mik nha! mik tick cho
Ta có :
\(\dfrac{1}{199}+\dfrac{2}{198}+...+\dfrac{198}{2}+\dfrac{199}{1}\)
\(=\left(\dfrac{1}{199}+1\right)+\left(\dfrac{2}{198}+1\right)+...+\left(\dfrac{198}{2}+1\right)\left(\dfrac{199}{1}+1\right)-199\)\(=\dfrac{200}{199}+\dfrac{200}{199}+...+\dfrac{200}{2}+200-199\)
\(=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)
\(=200\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{200}\right)\)
\(=200.A\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1}{200}\)
cmr \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{2}\)
Ta có: \(\dfrac{1}{101}>\dfrac{1}{200}\)
Tương tự ta có: \(\dfrac{1}{102}>\dfrac{1}{200}\) ;....; \(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{200}.100\)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{100}{200}\)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{1}{2}\left(đpcm\right)\)
Cho A = \(\dfrac{1}{199}+\dfrac{2}{198}+\dfrac{3}{197}+...+\dfrac{198}{2}+\dfrac{199}{1}\)
1/ Có nhận xét gì về tử và mẫu trong tổng trên?
2/ Chứng minh A = 200\(\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{200}\right)\)
a, tổng các tử và mẫu mỗi phân sô trên đều bằng 200
b, \(A=\dfrac{1}{199}+\dfrac{2}{198}+\dfrac{3}{197}+...+\dfrac{198}{2}+\dfrac{199}{1}\)
\(A=\dfrac{200}{199}+\dfrac{200}{198}+...+\dfrac{200}{2}+\dfrac{200}{200}\)
\(A=200\left(\dfrac{1}{199}+\dfrac{1}{198}+...+\dfrac{1}{2}+\dfrac{1}{200}\right)\)(đpcm)
Tính :
1) C = \(\left(\dfrac{1}{200^2}-1\right)\left(\dfrac{1}{199^2}-1\right)...\left(\dfrac{1}{101^2}-1\right)\)
2) \(D=\dfrac{1}{1-\dfrac{1}{1-2^{-1}}}+\dfrac{1}{1+\dfrac{1}{1+2^{-1}}}\)
\(C=\left(\dfrac{1}{200^2}-1\right)\left(\dfrac{1}{199^2-1}\right)...\left(\dfrac{1}{101^2-1}\right)\)
\(C=\dfrac{1-200^2}{200^2}.\dfrac{1-199^2}{199^2}.\dfrac{1-198^2}{198^2}...\dfrac{1-101^2}{101^2}\)
\(C=\dfrac{\left(1-200\right)\left(1+200\right)}{200^2}.\dfrac{\left(1-199\right)\left(1+199\right)}{199^2}...\dfrac{\left(1-100\right)\left(1+100\right)}{100^2}.\dfrac{\left(1-101\right)\left(1+101\right)}{101^2}\) \(C=\dfrac{-199.201}{200.200}.\dfrac{-198.200}{199.199}.\dfrac{-197.199}{198.198}...\dfrac{-99.101}{100.100}.\dfrac{-100.102}{101.101}\)
\(C=\dfrac{199.201}{200.200}.\dfrac{198.200}{199.199}.\dfrac{197.199}{198.198}...\dfrac{99.101}{100.100}.\dfrac{100.102}{101.101}\)
\(\Rightarrow C=\dfrac{200}{2.101}=\dfrac{201}{202}\)
Câu 2 mik chịu r sorry:(
Chứng minh : \(\dfrac{1}{2}< \dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+......................+\dfrac{1}{198}+\dfrac{1}{199}+\dfrac{1}{200}< \dfrac{100}{101}\)
Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Lại có:
\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{100}{101}\)
Vậy ...
Những dãy trên đều có 100 số hạng.
\(\dfrac{1}{200}< \dfrac{1}{100^2}+\dfrac{1}{101^2}+...+\dfrac{1}{199^2}< \dfrac{1}{99}\)