Cho A = \(\dfrac{1}{199}+\dfrac{2}{198}+\dfrac{3}{197}+...+\dfrac{198}{2}+\dfrac{199}{1}\)
1/ Có nhận xét gì về tử và mẫu trong tổng trên?
2/ Chứng minh A = 200\(\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{200}\right)\)
Chứng minh rằng:
\(A=\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{199}+\dfrac{1}{200}>\dfrac{7}{12}\)
Giúp mk nhé!
tính
A=\(\dfrac{\dfrac{1}{199}+\dfrac{1}{198}+.....+\dfrac{1}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{200}}\)
Giúp mk với
Câu 1:
Cho A = \(\dfrac{1}{\dfrac{99}{\dfrac{1}{2}+}}+\dfrac{2}{\dfrac{98}{\dfrac{1}{3}+}}+\dfrac{3}{\dfrac{97}{\dfrac{1}{4}+....}}+...+\dfrac{99}{\dfrac{1}{\dfrac{1}{100}}}\).
B =\(\dfrac{92}{\dfrac{1}{45}+}-\dfrac{1}{\dfrac{9}{\dfrac{1}{50}+}}-\dfrac{2}{\dfrac{10}{\dfrac{1}{55}+}}-\dfrac{3}{\dfrac{11}{\dfrac{1}{60}+....}}-...\dfrac{92}{\dfrac{100}{\dfrac{1}{500}}}\). Tính \(\dfrac{A}{B}\)
rút gọn
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}}{\dfrac{1}{99}+\dfrac{2}{98}+...+\dfrac{99}{1}}\)
S=\(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}....\dfrac{199}{200}\)
CMR S2<\(\dfrac{1}{200}\)
a/ Rút gọn 2 biểu thức sau: \(E=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)và \(F=\dfrac{94-\dfrac{1}{7}-\dfrac{2}{8}-\dfrac{3}{9}-...-\dfrac{94}{100}}{\dfrac{1}{35}+\dfrac{1}{40}+\dfrac{1}{45}+...+\dfrac{1}{500}}\)
b/ Tính E - 2F
Tính nhanh:
\(\dfrac{100}{1}.\dfrac{99}{2}.\dfrac{98}{3}.....\dfrac{-99}{200}.\dfrac{-100}{201}\)
Ai lm dc đảm bảo sẽ có GP
Tính : \(A=-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3^{101}}\)