Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 6 2021 lúc 23:57

Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)

Trần Minh Hiếu
Xem chi tiết
Hi Mn
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2021 lúc 20:37

Số hạng cuối là \(1+\dfrac{c}{2a}\) mới đúng chứ bạn?

Nguyễn Việt Lâm
16 tháng 1 2021 lúc 20:44

\(E=\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{a}{2b}\right)\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{b}{2c}\right)\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{c}{2a}\right)\)

\(E\ge3\sqrt[3]{\dfrac{a}{8b}}.3\sqrt[3]{\dfrac{b}{8c}}.3\sqrt[3]{\dfrac{c}{8a}}=\dfrac{27}{8}\)

\(E_{min}=\dfrac{27}{8}\) khi \(a=b=c\)

Khương Vũ Phương Anh
Xem chi tiết
Tiểu Ma Bạc Hà
14 tháng 5 2017 lúc 8:36

Ta có : A = \(a+\frac{1}{b\left(a-b\right)}\)\(\left(a-b\right)+\frac{1}{b\left(a-b\right)}+b\)

Áp dụng bất đẳng thức AM-GM cho 3 số không âm , ta có 

\(\left(a-b\right)+\frac{1}{b\left(a-b\right)}+b\) \(\ge3\sqrt[3]{\left(a-b\right)\frac{1}{b\left(a-b\right)}b}\)= 3 

Dấu "=" xảy ra khi  (a-b)=\(\frac{1}{b\left(a-b\right)}\)= b 

=> a=2 , b=1

Vậy Min A = 3 khi a=2, b=1

Hoàn Minh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 10:56

\(P=\dfrac{a^4}{a^2b^2+a^2c^4}+\dfrac{b^4}{b^2c^2+a^2b^2}+\dfrac{c^4}{a^2+b^2}-\dfrac{12abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(P\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2b^2+b^2c^2+c^2a^2\right)}-\dfrac{12abc}{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}}\)

\(P\ge\dfrac{3\left(a^2b^2+b^2c^2+c^2a^2\right)}{2\left(a^2b^2+b^2c^2+c^2a^2\right)}-\dfrac{3}{2}=0\)

\(P_{min}=0\) khi \(a=b=c\)

hiền nguyễn
Xem chi tiết
Akai Haruma
12 tháng 6 2023 lúc 18:45

Biểu thức P đâu bạn?

Nguyễn Thế Hiếu
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 15:08

Nếu mẫu là bình phương, tức \(A=\dfrac{a^4}{\left(b-1\right)^2}+\dfrac{b^4}{\left(a-1\right)^2}\) thì vẫn làm tương tự:

Ta có:

\(\dfrac{a^4}{\left(b-1\right)^2}+16\left(b-1\right)+16\left(b-1\right)+16\ge4\sqrt[4]{\dfrac{a^4.16^3.\left(b-1\right)^2}{\left(b-1\right)^2}}=32a\)

\(\dfrac{b^4}{\left(a-1\right)^2}+16\left(a-1\right)+16\left(a-1\right)+16\ge32b\)

Cộng vế:

\(A+32\left(a+b\right)-32\ge32\left(a+b\right)\)

\(\Rightarrow A\ge32\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 13:44

Ta có:

\(\dfrac{a^4}{\left(b-1\right)^3}+16\left(b-1\right)+16\left(b-1\right)+16\left(b-1\right)\ge32a\)

\(\dfrac{b^4}{\left(a-1\right)^3}+16\left(a-1\right)+16\left(a-1\right)+16\left(a-1\right)\ge32b\)

Cộng vế:

\(A+48\left(a+b\right)-96\ge32\left(a+b\right)\)

\(\Leftrightarrow A\ge96-16\left(a+b\right)\ge96-16.4=32\)

\(A_{min}=32\) khi \(a=b=2\)

Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 21:59

\(1,\) Áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\text{ và }\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Dấu \("="\Leftrightarrow x=y\)

\(A=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\\ A\ge\dfrac{1}{2}\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(1+\dfrac{4}{a+b}\right)^2+17=\dfrac{25}{2}+17=\dfrac{59}{2}\\ \text{Dấu }"="\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{a}=b+\dfrac{1}{b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{2}\)

Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 22:32

\(2,\text{Đặt }A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(\dfrac{xy^2z}{xz}+\dfrac{xyz^2}{xy}+\dfrac{x^2yz}{yz}\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(x^2+y^2+z^2\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+6\)

Áp dụng Cosi: \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\\\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\end{matrix}\right.\)

Cộng VTV \(\Leftrightarrow A^2\ge2\left(x^2+y^2+z^2\right)+6=12\\ \Leftrightarrow A\ge2\sqrt{3}\)

Dấu \("="\Leftrightarrow x=y=z=1\)

Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 7:09

Câu 1

\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)

Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)

Câu 2:

\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)

Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24