Cho a, b > 0
Tìm Min của A = a +\(\dfrac{1}{b\left(a-b\right)}\)
Cho a,b >0 và \(a+b\le3\). Tìm min
\(K=\dfrac{1}{a^2+b^2-2\left(a+b\right)+2}+\dfrac{1}{ab-\left(a+b\right)+1}+4\left(ab-a-b\right)\)
Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)
Cho \(a,b>0;ab=1\) . Tìm Min \(P=\dfrac{\left(a+b-1\right)\left(a^2+b^2\right)}{a+b}\)
+) Tìm min
\(E=\dfrac{1+\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{xy+yz+zx}\)
+) Tìm max và min
\(F=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Trong đó a,b,c>0 và \(min\left\{a,b,c\right\}\ge\dfrac{1}{4}max\left\{a,b,c\right\}\)
a,b,c>0 . Tìm Min \(E=\left(1+\dfrac{a}{2b}\right)\left(1+\dfrac{b}{2c}\right)\left(1+\dfrac{1}{2a}\right)\)
Số hạng cuối là \(1+\dfrac{c}{2a}\) mới đúng chứ bạn?
\(E=\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{a}{2b}\right)\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{b}{2c}\right)\left(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{c}{2a}\right)\)
\(E\ge3\sqrt[3]{\dfrac{a}{8b}}.3\sqrt[3]{\dfrac{b}{8c}}.3\sqrt[3]{\dfrac{c}{8a}}=\dfrac{27}{8}\)
\(E_{min}=\dfrac{27}{8}\) khi \(a=b=c\)
Cho a, b > 0
Tìm Min của A = a +\(\dfrac{1}{b\left(a-b\right)}\)
Ta có : A = \(a+\frac{1}{b\left(a-b\right)}\)= \(\left(a-b\right)+\frac{1}{b\left(a-b\right)}+b\)
Áp dụng bất đẳng thức AM-GM cho 3 số không âm , ta có
\(\left(a-b\right)+\frac{1}{b\left(a-b\right)}+b\) \(\ge3\sqrt[3]{\left(a-b\right)\frac{1}{b\left(a-b\right)}b}\)= 3
Dấu "=" xảy ra khi (a-b)=\(\frac{1}{b\left(a-b\right)}\)= b
=> a=2 , b=1
Vậy Min A = 3 khi a=2, b=1
Cho \(a,b,c>0\). Tìm min:
\(P=\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}-\dfrac{12abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(P=\dfrac{a^4}{a^2b^2+a^2c^4}+\dfrac{b^4}{b^2c^2+a^2b^2}+\dfrac{c^4}{a^2+b^2}-\dfrac{12abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(P\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2b^2+b^2c^2+c^2a^2\right)}-\dfrac{12abc}{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}}\)
\(P\ge\dfrac{3\left(a^2b^2+b^2c^2+c^2a^2\right)}{2\left(a^2b^2+b^2c^2+c^2a^2\right)}-\dfrac{3}{2}=0\)
\(P_{min}=0\) khi \(a=b=c\)
Cho a, b > 0 . Tìm MIN của :
P= \(\dfrac{a^2+3ab+b^2}{\sqrt{ab}\left(a+b\right)}\)
tìm Min của A=\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{b^4}{\left(a-1\right)^3}\) biết a,b >1 và a+b≤4
Nếu mẫu là bình phương, tức \(A=\dfrac{a^4}{\left(b-1\right)^2}+\dfrac{b^4}{\left(a-1\right)^2}\) thì vẫn làm tương tự:
Ta có:
\(\dfrac{a^4}{\left(b-1\right)^2}+16\left(b-1\right)+16\left(b-1\right)+16\ge4\sqrt[4]{\dfrac{a^4.16^3.\left(b-1\right)^2}{\left(b-1\right)^2}}=32a\)
\(\dfrac{b^4}{\left(a-1\right)^2}+16\left(a-1\right)+16\left(a-1\right)+16\ge32b\)
Cộng vế:
\(A+32\left(a+b\right)-32\ge32\left(a+b\right)\)
\(\Rightarrow A\ge32\)
Ta có:
\(\dfrac{a^4}{\left(b-1\right)^3}+16\left(b-1\right)+16\left(b-1\right)+16\left(b-1\right)\ge32a\)
\(\dfrac{b^4}{\left(a-1\right)^3}+16\left(a-1\right)+16\left(a-1\right)+16\left(a-1\right)\ge32b\)
Cộng vế:
\(A+48\left(a+b\right)-96\ge32\left(a+b\right)\)
\(\Leftrightarrow A\ge96-16\left(a+b\right)\ge96-16.4=32\)
\(A_{min}=32\) khi \(a=b=2\)
1. Cho a,b>0; a+b=1
Tìm min A=\(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\)
2. Cho x,y,x >0 t/m: \(x^2+y^2+z^2=3\)
CMR: \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) ≥ 3
\(1,\) Áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\text{ và }\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Dấu \("="\Leftrightarrow x=y\)
\(A=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\\ A\ge\dfrac{1}{2}\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(1+\dfrac{4}{a+b}\right)^2+17=\dfrac{25}{2}+17=\dfrac{59}{2}\\ \text{Dấu }"="\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{a}=b+\dfrac{1}{b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{2}\)
\(2,\text{Đặt }A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(\dfrac{xy^2z}{xz}+\dfrac{xyz^2}{xy}+\dfrac{x^2yz}{yz}\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(x^2+y^2+z^2\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+6\)
Áp dụng Cosi: \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\\\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\end{matrix}\right.\)
Cộng VTV \(\Leftrightarrow A^2\ge2\left(x^2+y^2+z^2\right)+6=12\\ \Leftrightarrow A\ge2\sqrt{3}\)
Dấu \("="\Leftrightarrow x=y=z=1\)
1. Cho a,b >0; a+b ≤ 1
Tìm min \(N=ab+\dfrac{1}{ab}\)
2. Cho a,b,c >0 t/m: a+b+c ≥ 6
Tìm min \(P=5a+6b+7c+\dfrac{1}{a}+\dfrac{8}{b}+\dfrac{27}{c}\)
3. Cho a,b,c ∈ \(\left[-1;2\right]\) và \(a^2+b^2+c^2=6\)
\(CM:\) a+b+c ≥ 0
Câu 1
\(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\\ \Leftrightarrow N=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{\dfrac{1}{16}}+\dfrac{15}{4\left(a+b\right)^2}\ge\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{17}{4}\)
Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Câu 2:
\(P=a+\dfrac{1}{a}+2b+\dfrac{8}{b}+3c+\dfrac{27}{c}+4\left(a+b+c\right)\\ P\ge2\sqrt{1}+2\sqrt{16}+2\sqrt{81}+4\cdot6=2+8+18+4=32\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
Câu 3: Cho a,b,c là các số thuộc đoạn [ -1;2 ] thõa mãn \(a^2+b^2+c^2=6.\) CMR : \(a+b+c>0\) - Hoc24