Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hiền nguyễn
Xem chi tiết
Minh Hiếu
26 tháng 4 2023 lúc 20:03

\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)

\(=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}+\dfrac{2021}{xy+yz+zx}\)

\(\ge\dfrac{9}{\left(x+y+z\right)^2}+\dfrac{2021}{\dfrac{\left(x+y+z\right)^2}{3}}\)\(=9+\dfrac{2021}{\dfrac{1}{3}}=6072\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Ta có:

+) \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\left(\text{Cô si}\right)\)

+) \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}\)

\(\ge\dfrac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\dfrac{9}{\left(x+y+z\right)^2}\left(\text{Svácxơ}\right)\)

 

hiền nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 4 2023 lúc 11:01

\(A=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}>=2\sqrt{2}\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\y=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2022 lúc 12:28

Đề bài sai, biểu thức này ko có min

Linh Anh
Xem chi tiết
Bách
Xem chi tiết
Lê Thị Thục Hiền
3 tháng 7 2021 lúc 7:25

Áp dụng BĐT Cauchy-Schwarz dạng Engel có:

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)

Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)

missing you =
3 tháng 7 2021 lúc 7:26

áp dụng BDT AM-GM

\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)

dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)

Trịnh Đức Hiếu
3 tháng 7 2021 lúc 8:25

h

 

Duong Thi Nhuong TH Hoa...
Xem chi tiết
Mai Thanh Hải
31 tháng 5 2017 lúc 5:32

Ta có :

\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)(1)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)( "=" khi a=b ) , ta có :

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}\)

\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\)    (2)  

Lại có : \(\left(x-y\right)^2>=0\) ("=" khi x=y )

\(\Leftrightarrow x^2-2xy+y^2>=0\)

\(\Leftrightarrow x^2+y^2>=2xy\)

\(\Leftrightarrow x^2+y^2+2xy>=4xy\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow1>=4xy\)

\(\Leftrightarrow2xy< =\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2xy}>=2\)  (3)

Từ (1) , (2) và (3) , suy ra :  \(K>=4+2=6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2+y^2=2xy\\x=y\\x+y=1\end{cases}}\)

                             \(\Rightarrow x=y=\frac{1}{2}\)

        Vậy Min\(K=6\)khi \(x=y=\frac{1}{2}\)

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Hiếu Minh
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 21:59

\(1,\) Áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\text{ và }\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Dấu \("="\Leftrightarrow x=y\)

\(A=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\\ A\ge\dfrac{1}{2}\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(1+\dfrac{4}{a+b}\right)^2+17=\dfrac{25}{2}+17=\dfrac{59}{2}\\ \text{Dấu }"="\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{a}=b+\dfrac{1}{b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{2}\)

Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 22:32

\(2,\text{Đặt }A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(\dfrac{xy^2z}{xz}+\dfrac{xyz^2}{xy}+\dfrac{x^2yz}{yz}\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(x^2+y^2+z^2\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+6\)

Áp dụng Cosi: \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\\\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\end{matrix}\right.\)

Cộng VTV \(\Leftrightarrow A^2\ge2\left(x^2+y^2+z^2\right)+6=12\\ \Leftrightarrow A\ge2\sqrt{3}\)

Dấu \("="\Leftrightarrow x=y=z=1\)

Trần Hữu Tuyển
Xem chi tiết
ngonhuminh
11 tháng 4 2017 lúc 18:20

\(\dfrac{x^2+y^2}{xy}=t;x,y>0\Rightarrow t\ge2\) khi x=y

\(A=t+\dfrac{1}{t}\ge2+\dfrac{1}{2}=\dfrac{5}{2}\)

\(A-\dfrac{5}{2}=\left(t-2\right)+\left(\dfrac{1}{t}-\dfrac{1}{2}\right)=\left(t-2\right)-\dfrac{\left(t-2\right)}{2t}=\dfrac{\left(2t-1\right)\left(t-2\right)}{2t}\)

\(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\\2t>0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(2t-1\right)\left(t-2\right)}{2t}\ge0\) đẳng thức khi t=2

\(\Rightarrow A-\dfrac{5}{2}\ge0\Rightarrow A\ge\dfrac{5}{2}\)

Vậy GTNN (A) =5/2 khi x=y