Cho x,y > 0 và x+y=1 . Tìm Min của M=\(\dfrac{2}{xy}+\dfrac{3}{x^2+y^2}\)
Cho x, y, z > 0 và x+y+z=1. Tìm MIN của :
P= \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)
\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)
\(=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}+\dfrac{2021}{xy+yz+zx}\)
\(\ge\dfrac{9}{\left(x+y+z\right)^2}+\dfrac{2021}{\dfrac{\left(x+y+z\right)^2}{3}}\)\(=9+\dfrac{2021}{\dfrac{1}{3}}=6072\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Ta có:
+) \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\left(\text{Cô si}\right)\)
+) \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}\)
\(\ge\dfrac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\dfrac{9}{\left(x+y+z\right)^2}\left(\text{Svácxơ}\right)\)
Cho x > y > 0 và xy=1. Tìm MIN của A= \(\dfrac{x^2+y^2}{x-y}\)
\(A=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}>=2\sqrt{2}\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\y=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
cho x,y,z>0 và x+y+z=\(\dfrac{3}{2}\)
tìm Min \(P=\dfrac{\sqrt{x^2+xy+y^2}}{\left(x+y\right)^2+1}+\dfrac{\sqrt{y^2+yz+z^2}}{\left(y+z\right)^2+1}+\dfrac{\sqrt{z^2+zx+x^2}}{\left(z+x\right)^2+1}\)
Đề bài sai, biểu thức này ko có min
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
cho x,y>0 thỏa mãn: x+y=1
tìm Min \(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel có:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)
áp dụng BDT AM-GM
\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)
\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)
dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)
Cho x,y>0 và x+y=1. Tìm min \(K=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Ta có :
\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)(1)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)( "=" khi a=b ) , ta có :
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}\)
\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\) (2)
Lại có : \(\left(x-y\right)^2>=0\) ("=" khi x=y )
\(\Leftrightarrow x^2-2xy+y^2>=0\)
\(\Leftrightarrow x^2+y^2>=2xy\)
\(\Leftrightarrow x^2+y^2+2xy>=4xy\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow1>=4xy\)
\(\Leftrightarrow2xy< =\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2xy}>=2\) (3)
Từ (1) , (2) và (3) , suy ra : \(K>=4+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2+y^2=2xy\\x=y\\x+y=1\end{cases}}\)
\(\Rightarrow x=y=\frac{1}{2}\)
Vậy Min\(K=6\)khi \(x=y=\frac{1}{2}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
1. Cho a,b>0; a+b=1
Tìm min A=\(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\)
2. Cho x,y,x >0 t/m: \(x^2+y^2+z^2=3\)
CMR: \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\) ≥ 3
\(1,\) Áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\text{ và }\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Dấu \("="\Leftrightarrow x=y\)
\(A=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\\ A\ge\dfrac{1}{2}\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(1+\dfrac{4}{a+b}\right)^2+17=\dfrac{25}{2}+17=\dfrac{59}{2}\\ \text{Dấu }"="\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{a}=b+\dfrac{1}{b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{2}\)
\(2,\text{Đặt }A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(\dfrac{xy^2z}{xz}+\dfrac{xyz^2}{xy}+\dfrac{x^2yz}{yz}\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(x^2+y^2+z^2\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+6\)
Áp dụng Cosi: \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\\\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\end{matrix}\right.\)
Cộng VTV \(\Leftrightarrow A^2\ge2\left(x^2+y^2+z^2\right)+6=12\\ \Leftrightarrow A\ge2\sqrt{3}\)
Dấu \("="\Leftrightarrow x=y=z=1\)
Cho x,y>0.Tìm Min của \(A=\dfrac{xy}{x^2+y^2}+\dfrac{x^2+y^2}{xy}\)
\(\dfrac{x^2+y^2}{xy}=t;x,y>0\Rightarrow t\ge2\) khi x=y
\(A=t+\dfrac{1}{t}\ge2+\dfrac{1}{2}=\dfrac{5}{2}\)
\(A-\dfrac{5}{2}=\left(t-2\right)+\left(\dfrac{1}{t}-\dfrac{1}{2}\right)=\left(t-2\right)-\dfrac{\left(t-2\right)}{2t}=\dfrac{\left(2t-1\right)\left(t-2\right)}{2t}\)
\(t\ge2\Rightarrow\left\{{}\begin{matrix}2t-1>0\\t-2\ge0\\2t>0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(2t-1\right)\left(t-2\right)}{2t}\ge0\) đẳng thức khi t=2
\(\Rightarrow A-\dfrac{5}{2}\ge0\Rightarrow A\ge\dfrac{5}{2}\)
Vậy GTNN (A) =5/2 khi x=y