Những câu hỏi liên quan
sontung mtp
Xem chi tiết
đề bài khó wá
2 tháng 3 2018 lúc 22:18

áp dụng BĐT Cô si :

+ cho cặp số a,b ta được \(a+b\ge2\sqrt{ab}\left(1\right)\)

+ cho cặp số \(\dfrac{1}{a}+\dfrac{1}{b}\) ta được \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\left(2\right)\)

Nhân hai vế với \(\left(1\right),\left(2\right)\) ta được :\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.\dfrac{2}{\sqrt{ab}}=4\) (đpcm)

Bình luận (0)
Lê Đức Lương
Xem chi tiết
Đoàn Đức Hà
26 tháng 5 2022 lúc 20:29

Ta có: 

\(4\le\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\le\dfrac{a+b}{2}+\dfrac{a+1}{2}+\dfrac{b+1}{2}+1\)

\(=a+b+2\)

\(\Leftrightarrow a+b\ge2\)

\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\ge2\)

Dấu \(=\) xảy ra khi \(a=b=1\).

 

Bình luận (0)
Monkey D Luffy
Xem chi tiết
TNA Atula
2 tháng 2 2018 lúc 21:55

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

=> (a+b).\(\left(\dfrac{1}{b}+\dfrac{1}{b}\right)\ge\left(a+b\right).\dfrac{4}{a+b}=4\left(dpcm\right)\)

b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+b+c}\)

=>\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\left(dpcm\right)\)

Bình luận (0)
Nguyễn Quỳnh
Xem chi tiết
Neet
7 tháng 12 2017 lúc 22:18

Bài 1:

dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)

Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)

\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)

P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf

Bình luận (2)
Unruly Kid
8 tháng 12 2017 lúc 12:03

...........

Bình luận (0)
Unruly Kid
8 tháng 12 2017 lúc 12:55

2) Ta có nhận xét sau: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)

Áp dụng Cauchy-Schwarz dạng Engel và AM-GM, ta có:

\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{34}{ab}+2ab\)

\(A\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(a+b\right)^2}+\dfrac{34}{ab}+544ab-542ab\)

\(A\ge4+4+2\sqrt{\dfrac{34}{ab}.544ab}-542.\dfrac{\left(a+b\right)^2}{4}\)

\(A\ge8+272-\dfrac{271}{2}=144,5\)

GTNN của A là 144,5 khi \(a=b=\dfrac{1}{2}\)

Bình luận (0)
vung nguyen thi
Xem chi tiết
Lê Bùi
3 tháng 12 2017 lúc 10:53

a)ta có \(a^2+b^2\ge2ab\)

\(\Leftrightarrow1\ge ab\)

theo bđt cauchy schwarz ta có

\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\left(\dfrac{a}{b^2}+\dfrac{b}{a^2}\right)\ge2\sqrt{\dfrac{a.b}{a.b}}.2\sqrt{\dfrac{a.b}{a^2.b^2}}=2.1.2\dfrac{1}{1^2}=4\)

\(\Rightarrow dpcm\)

Bình luận (0)
Nguyễn Quỳnh Trang
Xem chi tiết
Phùng Khánh Linh
23 tháng 4 2018 lúc 18:17

Áp dụng BĐT Cô - si : x + y ≥ \(2\sqrt{xy}\) ( x > 0 ; y > 0)

\(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{2}{\sqrt{ab}}\) ( a > 0 ; b > 0 )

⇒ ( a + b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)\(\dfrac{2}{\sqrt{ab}}\).\(2\sqrt{ab}\)

⇒ ( a + b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) ≥ 4

Bình luận (0)
Nhã Doanh
23 tháng 4 2018 lúc 18:31

Xét hiệu:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-4=1+\dfrac{a}{b}+\dfrac{b}{a}+1-4\)

\(=\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2+b^2-2ab}{ab}=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)

Suy ra: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Bình luận (0)
Đời về cơ bản là buồn......
23 tháng 4 2018 lúc 17:32

*đây là cách không áp dụng bất đẳng thức nào nhé*

Ta có: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(=\dfrac{a}{a}+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{b}\)

\(=2+\dfrac{a}{b}+\dfrac{b}{a}\)

Xét \(\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2-2ab+b^2}{ab}=\dfrac{\left(a-b\right)^2}{ab}\ge0\)

do \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\a>0,b>0\Rightarrow ab>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)

\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Cộng 2 vế của \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với 2, ta được

\(2+\dfrac{a}{b}+\dfrac{b}{a}\ge4\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Bình luận (0)
Phùng Minh Phúc
Xem chi tiết
Akai Haruma
23 tháng 1 2022 lúc 16:40

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$

Bình luận (0)
Thư Trần
Xem chi tiết
Gia Huy
18 tháng 6 2023 lúc 21:35

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)

Ta có:

\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)

BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)

Đánh giá cuối cùng đúng theo BĐT Cauchy

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi  a = b = c = 1.

Bình luận (1)
vvvvvvvv
Xem chi tiết
Hồng Phúc
15 tháng 3 2021 lúc 17:04

I. Đúng do BĐT Cosi \(a+\dfrac{9}{a}\ge2.\sqrt{a.\dfrac{9}{a}}=6\)

II. Sai do \(\dfrac{a^2+5}{\sqrt{a^2+4}}=\sqrt{a^2+4}+\dfrac{1}{\sqrt{a^2+4}}\ge2+\dfrac{1}{a^2+4}>2\)

III. Đúng do BĐT Cosi \(\dfrac{\sqrt{ab}}{ab+1}\le\dfrac{\sqrt{ab}}{2\sqrt{ab}}=\dfrac{1}{2}\)

IV. Đúng do BĐT BSC \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\ge\left(\sqrt{a}.\dfrac{1}{\sqrt{a}}+\sqrt{b}.\dfrac{1}{\sqrt{b}}\right)^2=4\)

Bình luận (0)