Bài 1: Tính
a) (1+3y)2 ; (5x+y)2 ; (x+0,25)2
Chuyện là em đag học bài nhân đa thức với đa thức, nhưng đề nó ra như này nên em đag ko hiểu ạ. Thật sự xin lỗi vì đã làm phiền mn :((((
bài 1 : thực hiện phép tính
a) (4x - 1)(2 - x)-(2x-1)^2
b) (15x^4y^5-30x^3y^4+35x^3y^4): (5x^3y^3)
a) (4x-1)(2-x)-(2x-1)2
= 8x-4x2-2+x-(4x2-4x+1) = -8x2+13x-3
b) (15x4y5-30x3y4+35x3y4):(5x3y3)
= 3xy2-6y+7y = 3xy2+y
a: \(=8x-4x^2-2+2x-4x^2+4x-1\)
\(=-8x^2+14x-3\)
Bài 2:cho đa thức A=2x^3y-3xy^2+5x^3y-xy^2+2 a)thu gọn đa thức A và xác định bậc của đa thức. b)tính giá trị của đa thức A tại x=1;y=-1
\(a,A=2x^3y-3xy^2+5x^3y-xy^2+2\\=(2x^3y+5x^3y)+(-3xy^2-xy^2)+2\\=7x^3y-4xy^2+2\)
Bậc của đa thức A: 3 + 1 = 4.
\(b,\) Thay \(x=1;y=-1\) vào \(A\), ta được:
\(A=7\cdot1^3\cdot\left(-1\right)-4\cdot1\cdot\left(-1\right)^2+2\)
\(=-7-4+2=-9\)
bài 1)quy đồng mẫu thức của phân thức sau x-y/2x^2-4xy+2y^2 ; x+y/2x^2+4xy+2y^2 ; 1/y^2-x^2
bài 2)tính giá trị biểu thức
A=(x+3y)^2/(x-3y)^2 với x^2+9y^2=8xy
Bài 11 : rút gọn các biểu thức
a. ( 7x + 4 )2 - ( 7x + 4 ) ( 7x - 4 )
b. ( x + 2y)2 - 6xy ( x + 2y )
Bài 12 : Tính
a. (1/2x + 4)2
b. ( 7x - 5y )2
c. ( 6x2 + y2 ) ( y2 - 6x2 )
d . ( x + 2y )2
e. ( x - 3y ) ( x + 3y )
f. ( 5 - x )2
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
\(11,\)
\(a,\left(7x+4\right)^2-\left(7x+4\right)\left(7x-4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=\left(7x+4\right).8=56x+32\)
\(b,\left(x+2y\right)^2-6xy\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-6xy\right)\)
Bài `12`
`(1/2x+4)^2`
`=(1/2x)^2 + 2 . 1/2x.4 + 4^2`
`= 1/4 x^2 +4x + 16`
__
`(7x-5y)^2`
`=(7x)^2-2.7x.5y+(5y)^2`
`= 49x^2 - 70xy + 25y^2`
__
`(6x^2+y^2)(y^2-6x^2)`
`=(y^2+6x^2)(y^2-6x^2)`
`=(y^2)^2 - (6x^2)^2`
`=y^4-36x^4`
__
`(x+2y)^2`
`=x^2+ 2.x.2y+(2y)^2`
`= x^2 + 4xy +4y^2`
__
`(x-3y)(x+3y)`
`=x^2 - (3y)^2`
`=x^2 - 9y^2`
__
`(5-x)^2`
`=5^2 -2.5.x+x^2`
`=25 - 10x+x^2`
Bài `11`
`(7x+4)^2 -(7x+4)(7x-4)`
`= (7x+4)(7x+4) -(7x+4)(7x-4)`
`=(7x+4)(7x+4-7x+4)`
`=8(7x+4)`
`= 56x+32`
__
`(x+2y)^2-6xy (x+2y)`
`= (x+2y) (x+2y-6xy)`
Bài 1: Tính tỉ số x:y. Biết
a) 2x + 3y/4x - y = 2/3
a) \(\frac{2x+3y}{4x-y}=\frac{2}{3}\)
\(=>\left(2x+3y\right).3=\left(4x-y\right).2\)
\(=>6x+9y=8x-2y\)
\(=>9y+2y=8x-6x\)
\(=>11y=2x\)
\(=>\frac{x}{y}=\frac{11}{2}\)
vay \(\frac{x}{y}=\frac{11}{2}\)
[Ôn thi vào 10]
Bài 1:
a. Tính \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
b. Rút gọn biểu thức \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
Bài 2:
a. Giải hệ phương trình: \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\)
b. Giải phương trình: \(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)
Bài 3:
Một đội thợ mỏ phải khai thác 260 tấn than trong một thời hạn nhất định. Trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày.
Hỏi theo kế hoạch mỗi ngày đội thợ phải khai thác bao nhiêu tấn than?
Bài 1:
a) \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
\(=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}\)
\(=\sqrt{2}\)
b) \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{4-4\sqrt{5}+5}-\sqrt{5}\)
\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)
\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}\)
\(=-2\)
Bài 2:
a) \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
b) ĐKXĐ: \(x\ne\pm2\)
Với \(x\ne\pm2\), ta có:
\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)
\(\Leftrightarrow\dfrac{10}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}=1\)
\(\Leftrightarrow\dfrac{10-x-2}{x^2-4}=1\)
\(\Leftrightarrow\dfrac{8-x}{x^2-4}=1\)
\(\Rightarrow x^2-4=8-x\)
\(\Leftrightarrow x^2+x-12=0\)
\(\Leftrightarrow x^2-3x+4x-12=0\)
\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\) (TM)
Vậy phương trình có tập nghiệm là: S ={3; -4}
Gọi số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: x(tấn). 0 < x <260
Số tấn than đã khai thác thực tế trong mỗi ngày là: x + 3 (tấn)
Số ngày mà đội thợ khai thác 260 tấn trong kế hoạch là: \(\dfrac{260}{x}\) (ngày)
Số ngày mà đội thợ khai thác 261 tấn thực tế là: \(\dfrac{261}{x+3}\) (ngày)
Vì trên thực tế, mỗi ngày đội đều khai thác vượt định mức 3 tấn, do đó họ đã khai thác được 261 tấn than và xong trước thời hạn một ngày nên ta có phương trình:
\(\dfrac{261}{x+3}+1=\dfrac{260}{x}\)
\(\Leftrightarrow\dfrac{261+x+3}{x+3}=\dfrac{260}{x}\)
\(\Leftrightarrow\dfrac{264+x}{x+3}=\dfrac{260}{x}\)
\(\Rightarrow260\left(x+3\right)=x\left(264+x\right)\)
\(\Leftrightarrow260x+780=264x+x^2\)
\(\Leftrightarrow x^2+4x-780=0\)
\(\Leftrightarrow x^2-26x+30x-780=0\)
\(\Leftrightarrow x\left(x-26\right)+30\left(x-26\right)=0\)
\(\Leftrightarrow\left(x-26\right)\left(x+30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-26=0\\x+30=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=26\left(TM\right)\\x=-30\left(loại\right)\end{matrix}\right.\)
Vậy số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là: 26 tấn
Bài 1: Rút gọn biểu thức:
a,A=(x^2-1)*(x+2)*(x-2)*(x^2+2x+4)
b,B=92x+3y)*(2x-3y)*(2x-1)^2+(3y-1)^2
Bài 2:Phân tích các đẳng thức sau thành nhân tử:
a,x^2-2x+x-2
b,x^2-2xy-9+y^2
Bài 3:
a, Tính giá trị của biểu thức A = \(5xy-10+3y\) tại \(x=2\) và \(y=-3\)
b, Tính giá trị của biểu thức B = \(8xy^2-xy-2x-10\) tại \(x=1\) và \(y=-1\)
a: \(A=5\cdot2\cdot\left(-3\right)-10+3\cdot\left(-3\right)=-30-10-9=-49\)
b: \(B=8\cdot1\cdot\left(-1\right)^2-1\cdot\left(-1\right)-2\cdot1-10\)
=8+1-2-10
=-3
a: A=5⋅2⋅(−3)−10+3⋅(−3)=−30−10−9=−49
b: B=8⋅1⋅(−1)2−1⋅(−1)−2⋅1−10
=8+1-2-10
=-3
Bài 1: thực hiện phép tính
a) \(-2x^3y * ( 2x^2 - 3y + 5y^2 ) \)
b) \(( x + 1 ) * ( x^2 - x + 1 )\)
c) \(( 2x - 1 ) * ( 3x + 2 ) * ( 3 -x ) \)
Bài 2: Chứng minh đẳng thức:
\(( a + b ) * ( a^3 - a^2b + ab^2 - b^3 ) = a^4 - b^4\)
Bài làm :
Bài 1 :
\(a,-2x^3y.\left(2x^2-3y+5y^2\right)\)
\(=-4x^5y+6x^3y^2-10x^3y^3\)
\(b,\left(x+1\right)\left(x^2-x+1\right)\)
\(=x^3-x^2+x+x^2-x+1\)
\(=x^3+1\)
\(c,\left(2x-1\right).\left(3x+2\right).\left(3-x\right)\)
\(=\left[\left(2x-1\right)\left(3x+2\right)\right]\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2-6x^3+12x-4x^2-9x+3x^2-6+2x\)
\(=-6x^3+\left(18x^2-4x^2+3x^2\right)+\left(12x-9x+2x\right)-6\)
\(=-6x^3+17x^2+5x-6\)
Bài 2 :
\(\left(a+b\right).\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+ba^3-a^2b^2+ab^3-b^4\)
\(=a^4+\left(-a^3b+ba^3\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)-b^4\)
\(=a^4-b^4\)
=> đpcm
Học tốt nha
Bài 1:Tính:
a) (2x-y)+(2x-y)+(2x-y)+3y
b) (x+2y)+(x-2y)+(8x-3y)
c) (x+2y)-2(x-2y)-(2x-3y)
Bài 2: Cho 2 đa thức P= 9x²-6xy+3y² và Q= -3x²+7xy-2y²
Tìm đa thức M biết M+2(x²-4y²)+Q=6x²-4xy+5y²+P
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy