Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi Linh
Xem chi tiết
Phạm Nguyễn Tất Đạt
28 tháng 3 2018 lúc 18:01

\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)

\(\Leftrightarrow\dfrac{a}{b+c-a}+\dfrac{1}{2}+\dfrac{b}{a+c-b}+\dfrac{1}{2}+\dfrac{c}{a+b-c}+\dfrac{1}{2}\ge3+\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a+b+c}{2\left(b+c-a\right)}+\dfrac{a+b+c}{2\left(a+c-b\right)}+\dfrac{a+b+c}{2\left(a+b-c\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\dfrac{a+b+c}{2}\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{9}{2}\)

Lại có:\(\dfrac{a+b+c}{2}\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{a+b+c}{2}\cdot\dfrac{9}{b+c-a+a+c-b+a+b-c}\ge\dfrac{9}{2}\left(đpcm\right)\)

Akai Haruma
28 tháng 3 2018 lúc 14:58

Lời giải:

Có nhiều cách để giải quyết bài toán này. Đây là một cách đơn thuần sử dụng BĐT Cô-si.

Đặt \(\left\{\begin{matrix} b+c-a=x\\ a+c-b=y\\ a+b-c=z\end{matrix}\right.\) (\(x,y,z>0\) do $a,b,c$ là ba cạnh tam giác)

\(\Rightarrow (a,b,c)=\left(\frac{y+z}{2}; \frac{x+z}{2}; \frac{x+y}{2}\right)\)

BĐT cần chứng minh tương đương với:

\(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3(*)\)

Áp dụng BĐT Cô-si cho 3 số:

\(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(z+x)}{8xyz}}\)

Tiếp tục Cô-si: \((x+y)(y+z)(z+x)\geq 2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

\(\Rightarrow \frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{8xyz}{8xyz}}=3\)

Do đó $(*)$ được chứng minh.

Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c\)

Tuyển Trần Thị
Xem chi tiết
Bùi Thị Vân
25 tháng 12 2017 lúc 15:39

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{9}{a+b+c}\ge4\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
\(\Leftrightarrow\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}+9\) \(\ge4\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)

\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}+12\ge4\left(3+\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\)
\(\Leftrightarrow\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\ge4\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\).
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) ta có:
\(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\le\dfrac{1}{4}\left(\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}\right)\) \(=\dfrac{1}{4}\left(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\right)\).
Suy ra \(4\left(\dfrac{c}{a+b}+\dfrac{a}{b+c}+\dfrac{b}{a+c}\right)\le\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\) 9 (đpcm).




Dat
Xem chi tiết
Lightning Farron
21 tháng 5 2018 lúc 17:48

Áp dụng BĐT AM-GM ta có:

\(\dfrac{abc}{a^2+bc}\le\dfrac{abc}{2a\sqrt{bc}}=\dfrac{\sqrt{bc}}{2}\le\dfrac{b+c}{4}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(abc.VT\le\dfrac{2\left(a+b+c\right)}{4}=1\Leftrightarrow VT\le\dfrac{1}{abc}=VP\)

Dấu "="\(\Leftrightarrow a=b=c=\dfrac{2}{3}\)

Bi Bi
Xem chi tiết
Khôi Bùi
17 tháng 2 2019 lúc 13:41

Ta có : Do a ; b ; c là 3 cạnh của 1 tam giác nên :

\(\dfrac{a}{a+b+c}< \dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

Cộng 3 vế với nhau , ta có :

\(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\left(đpcm\right)\)

Ánh Lê
17 tháng 2 2019 lúc 13:41

Ta có :

\(\dfrac{â}{b+c}>\dfrac{a}{a+b+c}\);

\(\dfrac{b}{c+a}>\dfrac{b}{a+b+c}\);

\(\dfrac{c}{a+b}>\dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}>\dfrac{a+b+c}{a+b+c}=1\) (*)

Ta có bất đằng thức tam giác : a+b > c ; b+c > a ; a+c > b

\(\Rightarrow\dfrac{a}{b+c}< 1;\dfrac{b}{a+c}< 1;\dfrac{c}{a+b}< 1\)

\(\dfrac{a}{b+c}< 1\Rightarrow\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)

Tương tự :

\(\dfrac{b}{a+c}< \dfrac{2b}{a+b+c};\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\) (**)

Kết hợp (*) với (**)

=> ĐPCM

Nguyễn Thành Trương
17 tháng 2 2019 lúc 13:41

Do $a$, $b$, $c>0$ nên $\dfrac{a}{a+b}<1$, vì vậy: $\dfrac{a}{a+b+c}<\dfrac{a}{a+b}<\dfrac{a+c}{a+b+c}$.
Tương tự ta có: $\dfrac{b}{a+b+c}<\dfrac{b}{b+c}<\dfrac{b+a}{a+b+c}$ và $\dfrac{c}{a+b+c}<\dfrac{c}{a+c}<\dfrac{c+b}{a+b+c}$.
Cồng vế theo vế các bất đẳng thức tương tự ta thu được điều phải chứng minh.

Nguyễn Thị Thanh Trang
Xem chi tiết
Nguyễn Tất Đạt
17 tháng 8 2019 lúc 10:52

Ta có \(a,b,c\)và \(a',b',c'\)là độ dài các cạnh tương ứng của 2 tam giác đồng dạng

Đương nhiên \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\left(k>0\right)\). Khi đó:

\(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\)(1)

\(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k\left(a'+b'+c'\right)^2}=\sqrt{k}\left(a'+b'+c'\right)\)(2)

Từ (1) và (2) suy ra ĐPCM.

Lê Tài Bảo Châu
Xem chi tiết
Linh Linh
3 tháng 3 2019 lúc 13:17

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

Sai thì thôi nha !!! k mk nha

Girl
3 tháng 3 2019 lúc 13:19

\(a\ge b;a\ge c\Rightarrow a+a+a\ge a+b+c\Rightarrow3a\ge a+b+c\Rightarrow\frac{a+b+c}{3}\le a\) (1)

bđt tam giác: \(a< b+c\Rightarrow a+a< a+b+c\Rightarrow2a< a+b+c\Rightarrow a< \frac{a+b+c}{2}\)(2)

(1); (2) suy ra đpcm

Lê Tài Bảo Châu
3 tháng 3 2019 lúc 13:24

Không hiểu cách làm của bạn. Bài làm này chỉ cần bình thường thôi

 Ta có: \(a\ge b,a\ge c\)

          \(\Rightarrow b+c\le2a\)

          \(\Rightarrow a+b+c\le3a\)

           \(\Rightarrow\frac{a+b+c}{3}\le a\)  (1)

Xét \(\Delta ABC\)có \(a< b+c\)

                            \(\Rightarrow2a< a+b+c\)

                            \(\Rightarrow a< \frac{a+b+c}{2}\)  (2)

Từ (1) và (2) \(\Rightarrow\frac{a+b+c}{3}\le a< \frac{a+b+c}{2}\)( đpcm)

              ( a<b+c vì trong một tam giác tổng độ dài 2 cạnh bao giờ cũng lớn hơn 1 một cạnh )

Doan Minh Quân
Xem chi tiết
Đặng Hữu Hiếu
25 tháng 5 2018 lúc 9:46

Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca

a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²

๖Fly༉Donutღღ
25 tháng 5 2018 lúc 12:51

Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn

QuocDat
25 tháng 5 2018 lúc 21:19

o0o Nguyễn Việt Hiếu o0o =)) người ta đã ko bt , m ko chỉ còn câu câu trả lời ...... cạn lời

Vi Đức Anh
Xem chi tiết
Dreya Gray
Xem chi tiết
Nguyễn Thị BÍch Hậu
30 tháng 6 2015 lúc 17:20

\((a+b-c)3 +(b+c-a)3 +(a+c-b)3=a3+b3+c3\). đặt a+b-c=x; b+c-a=y; c+a-b=z

=> ta được x+y+z= a+b+c 

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)=> \(\left(x^2+y^2+z^2-xy-yz-xz\right)=\left(a^2+b^2+c^2-ab-ac-bc\right)\Leftrightarrow\left(x+y+z\right)^2-3\left(xy+yz+xz\right)=\left(a+b+c\right)^2-3\left(ab+ac+bc\right)\)

\(\left(a+b+c\right)^2-3\left(xy+yz+xz\right)=\left(a+b+c\right)^2-3\left(ab+ac+bc\right)\Rightarrow xy+yz+xz=ab+ac+bc\)