Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khang Leo Top
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 3 2022 lúc 8:23

a: \(A\left(x\right)+B\left(x\right)\)

\(=-2x^3+11x^2-5x-\dfrac{1}{5}+2x^3-3x^2-7x+\dfrac{1}{5}\)

\(=8x^2-12x\)

b: C(x)=A(x)-B(x)

\(=-2x^3+11x^2-5x-\dfrac{1}{5}-2x^3+3x^2+7x-\dfrac{1}{5}\)

\(=-4x^3+14x^2+2x-\dfrac{2}{5}\)

Xin giấu tên
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2022 lúc 23:21

Bài 2: 

\(M\left(3\right)=3^2-4\cdot3+3=0\)

=>x=3 là nghiệm của M(x)

\(M\left(-1\right)=\left(-1\right)^2-4\cdot\left(-1\right)+3=1+3+4=8\)

=>x=-1 không là nghiệm của M(x)

Phạm Kim Oanh
Xem chi tiết
Bùi Đức Huy Hoàng
17 tháng 3 2022 lúc 18:19

a) phương trình \(x^3-3x^2+1\) có 3 nghiệm thực phân biệt là a,b,c(đề bài). Áp dụng Định lí Vi-ét cho đa thức bậc 3 ta có:\(\left\{{}\begin{matrix}a+b+c=3\\ab+bc+ac=0\\a.b.c=-1\end{matrix}\right.\)

ta có

      a+b+c=3

<=>\(\left(a+b+c\right)^2=9\)

<=>\(a^2+b^2+c^2+2ab+2bc+2ac=9\)

<=>\(a^2+b^2+c^2=9\)

<=>\(\left(a^2+b^2+c^2\right)^2=81\)

<=>\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=81\)(1)

ta có ab+bc+ac=0

   <=>\(\left(ab+bc+ac\right)^2=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2-2.1.3=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2=6\)(2)

Thay (2) vào (1) ta có \(a^4+b^4+c^4+2.6=81\)

                                <=>\(a^4+b^4+c^4=69\)

Bùi Đức Huy Hoàng
17 tháng 3 2022 lúc 19:11

b) \(\dfrac{a+1}{\left(b+c\right)\left(1-a\right)+1}=\dfrac{a+1}{\left(3-a\right)\left(1-a\right)+1}=\dfrac{a+1}{3+a^2-4a+1}=\dfrac{a+1}{a^2-4a+4}=\dfrac{a+1}{\left(a-2\right)^2}\)

cmtt =>\(B=\dfrac{a+1}{\left(a-2\right)^2}+\dfrac{b+1}{\left(b-2\right)^2}+\dfrac{c+1}{\left(c-2\right)^2}\)=\(\dfrac{1}{a-2}+\dfrac{1}{b-2}+\dfrac{1}{c-2}+3\left[\dfrac{1}{\left(a-2\right)^2}+\dfrac{1}{\left(b-2\right)^2}+\dfrac{1}{\left(c-2\right)^2}\right]\)=\(\dfrac{3\left[\left(a-2\right)\left(b-2\right)\right]^2+3\left[\left(b-2\right)\left(c-a\right)\right]^2+3\left[\left(c-2\right)\left(a-2\right)\right]^2}{\left[\left(a-2\right)\left(b-2\right)\left(c-2\right)\right]^2}\)

đặt t=(a-2)(b-2);u=(b-2)(c-2);v=(c-2)(a-2)     =>t+u+v=0

B thành \(\dfrac{3\left(t^2+u^2+v^2\right)}{t.u.v}\) bạn biến đổi để xuất hiện t+u+v

=>B=\(\dfrac{3\left(t+u+v\right)^2-6\left(t.u+u.v+t.v\right)}{t.u.v}=\dfrac{-6.\left(a-2\right)\left(b-2\right)\left(c-2\right)\left(a-2+b-2+c-2\right)}{t.u.v}=\dfrac{18}{\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)

(a-2)(b-2)(c-2)= abc-2(ab+bc+ac)+4(a+b+c)-8=12-9=3

Vậy B=3

Bùi Đức Huy Hoàng
17 tháng 3 2022 lúc 19:28

c) ta có \(\dfrac{a^3}{a^2+2bc}=\dfrac{a^3}{a^2-2ac-2ab}=\dfrac{a^2}{a-2c-2b}=\dfrac{a^2}{3a-2\left(a+b+c\right)}=\dfrac{a^2}{3\left(a-2\right)}\)

cmtt =>C=\(\dfrac{a^2}{3\left(a-2\right)}+\dfrac{b^2}{3\left(b-2\right)}+\dfrac{c^2}{3\left(c-2\right)}=\dfrac{a^2\left(b-2\right)\left(c-2\right)+b^2\left(a-2\right)\left(c-2\right)+c^2\left(a-2\right)\left(b-2\right)}{3\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)

bạn nhân vô thì ra C=\(\dfrac{4a^2-2a\left(ab+ac\right)-a+4b^2-2b\left(bc+ab\right)-b+4c^2-2c\left(ac+bc\right)-c}{3\left(a-2\right)\left(b-2\right)\left(c-2\right)}=\dfrac{ }{ }4\dfrac{ }{ }=\dfrac{4\left(a^2+b^2+c^2\right)-\left(a+b+c\right)+6abc}{3\left(a-2\right)\left(b-2\right)\left(c-2\right)}=\dfrac{4.9-3-6}{3.3}=\dfrac{27}{9}=3\)

Sách Giáo Khoa
Xem chi tiết
Heo Trang
24 tháng 4 2017 lúc 21:13

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

Tuyết Nhi Melody
19 tháng 4 2017 lúc 14:01

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x4−9x3−2x2−14x

Q(x)=5x4−x5+x2−2x3+3x2−14

=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) =

Nguyễn Thân Ngọc Huyền
24 tháng 4 2017 lúc 17:46

a, P(x) = x^5 + 7x^4 - 9x^3 - 2x^2 - 1/4x

Q(x) = -x^5 + 5x^4 - 2x^3 +4x^2 -1/4

b, P(x) + Q(x) = 12x^4 - 11x^3 + 2x^2 - 1/4x -1/4

P(x) + Q(x) = 2x^5 +2x^4 -7x^3 - 6x^2 - 1/4x -1/4

ý phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2022 lúc 20:58

a: \(P\left(-1\right)=3-1+\dfrac{7}{4}=\dfrac{7}{4}+2=\dfrac{15}{4}\)

\(Q\left(\dfrac{1}{2}\right)=-3\cdot\dfrac{1}{4}+2\cdot\dfrac{1}{2}+2=-\dfrac{3}{4}+3=\dfrac{9}{4}\)

b: Đặt P(x)-Q(x)=0

\(\Leftrightarrow3x^2+x+\dfrac{7}{4}=-3x^2+2x+2\)

\(\Leftrightarrow6x^2-x-\dfrac{1}{4}=0\)

\(\Leftrightarrow24x^2-4x-1=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot24\cdot\left(-1\right)=112>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{4-4\sqrt{7}}{48}=\dfrac{1-\sqrt{7}}{12}\\x_2=\dfrac{1+\sqrt{7}}{12}\end{matrix}\right.\)

Anh PVP
Xem chi tiết
Sahara
24 tháng 4 2023 lúc 20:38

\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm

Nguyễn Lê Phước Thịnh
24 tháng 4 2023 lúc 20:41

Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x

=>Q(x) vô nghiệm

Thanh Ngân
Xem chi tiết
Lấp La Lấp Lánh
29 tháng 11 2021 lúc 16:15

1A,B,D

2 M=2

\(=\dfrac{3}{4x}\)

\(=\dfrac{4\left(x+y\right)}{x-y}=\dfrac{4x+4y}{x-y}\)

5 K rút gọn đc

\(=\dfrac{4\left(x-1\right)+2\left(x-1\right)}{6\left(x-1\right)}=\dfrac{6\left(x-1\right)}{6\left(x-1\right)}=1\)

Ng KimAnhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 15:02

Bài 2:

a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)

b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)

\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)

\(=x^4-22x^3+108x^2-45x\)

c: \(=12x^5-18x^4+30x^3-24x^2\)

d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)

Hoàng Huy
Xem chi tiết
Trên con đường thành côn...
28 tháng 7 2021 lúc 14:43

undefined