Cho tam giác vuông ABC, \(\widehat{A}=90^0;\widehat{C}=30^0\) và đường phân giác BD (D thuộc cạnh AC)
a) Tính tỉ số \(\dfrac{AD}{CD}\)
b) Cho biết độ dài AB = 12,5cm. hãy tính chu vi và diện tích của tam giác ABC
Tam giác vuông ABC (\(\widehat{A}=90^0\)) có AB = 6cm, AC = 8cm và tam giác vuông A'B'C' (\(\widehat{A'}=90^0\)) có A'B' = 9cm, B'C' = 15 cm
Hỏi rằng hai tam giác vuông ABC và A'B'C' có đồng dạng với nhau không ? Vì sao ?
+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)
Áp dụng định lí Pi-ta-go, ta có:
A′B′2+A′C′2 =B′C′2
=> A′C′2=B′C′2−A′B′2=152−92=144
=> A’C’ =12 (cm)
Trong tam giác vuông ABC có \(\widehat{A}=90^0\)
Áp dụng định lí Pi-ta-go, ta có:
BC2=AB2+AC2= 62+82=100
Suy ra: BC = 10 (cm)
Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)
\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)
Vậy ∆ A’B’C’ đồng dạng với ∆ ABC
Các tam giác vuông ABC và DEF có \(\widehat{A}=\widehat{D}=90^0;AC=DF;\widehat{B}=\widehat{E}\). Các tam giác vuông đó có bằng nhau không ?
Xét hai tam giác vuông ABC và DEF có:
AC = DF (gt)
\(\widehat{ABC}=\widehat{DEF}\) (gt)
Vậy: \(\Delta ABC=\Delta DEF\left(cgv-gn\right)\).
Cho tam giác vuông ABC ( \(\widehat{A}=90^0\)) có đường cao AH = 6 cm , BC = 10 cm. Tính \(S_{ABC}\)
\(S_{\Delta ABC}=\frac{AH\cdot BC}{2}=\frac{6\cdot10}{2}=\frac{60}{2}=30\left(cm^2\right)\)
Vậy \(S_{\Delta ABC}=30cm^2\)
Cảm ơn bạn đã trả lời câu hỏi. Nhưng bạn trả lời sai rồi
Gọi AM là tiếp tuyến của tam giác ABC.
Xét tam giác vuông ABC có AM là tia tiếp tuyến ứng với cạch huyền BC
\(AM=\frac{BC}{2}=5cm\)
Xét tam giác vuông AHM Có cạch huyền AM = 5 cm là cạch lớn nhất
MÀ lại có cạch góc vuông AH = 6 cm lại lớn hơn cạch huyền
=) Tam giác không tồn tại =) không tính được diện tích tam giác ABC
Cho tam giác ABC. Phát biểu mệnh đề đảo của các mệnh đề sau và xét tính đúng sai của chúng ?
a) Nếu AB = BC = CA thì tam giác ABC là một tam giác đều.
b) Nếu AB > BC thì \(\widehat{C}>\overrightarrow{A}\)
c) Nếu \(\widehat{A}=90^0\) thì ABC là một tam giác vuông
a) "Nếu ABC là một tam giác đều thì AB = BC = CA", cả hai mệnh đề đều đúng
b) "Nếu \(\widehat{C}>\widehat{A}\) thì AB > BC". Cả hai mệnh đề đều đúng
c) "Nếu ABC là một tam giác vuông thì \(\widehat{A}=90^0\)"
Nếu tam giác ABC vuông tại B (hoặc C) thì mệnh đề đảo sai
cho tam giác ABC cân tại A (\(\widehat{A}< 90^0\)). vẽ đường tròn đường kính AB căt sBC tại D, cắt AC tại E. cmr
a.tam giác DBE cân
b.\(\widehat{CBE}=\dfrac{1}{2}\widehat{BAC}\)
Cho tam giác ABC vuông tại A, biết \(\widehat{B}=4\widehat{C}\). Tìm số đo của góc B
\(A.\widehat{B}=72^0\) \(B.\widehat{B}=18^0\) \(C.\widehat{B}=48^0\) \(D.\widehat{B}=64^0\)
Cho tam giác ABC có AB = 5, BC = 6, \(\widehat{A}=90^0+\frac{\widehat{B}}{2}\) .Tính BC.
Cho hình chóp A.ABCD có đáy là hình thang \(\widehat{ABC}=\widehat{BAD}=90^0,BA=BC=a;AD=2a\). Cạnh bên SA vuông góc với mặt phẳng đáy và \(SA=a\sqrt{2}\). Gọi H là hình chóp vuông góc của A lên SB. Chứng minh tam giác SCD là tam giác vuông và tính theo a khoảng cách từ H đến mặt phẳng (SCD)
Gọi I là trung điểm của AD.
Ta có : \(IA=ID=IC=a\Rightarrow CD\perp AC\)
Mặt khác, \(CD\perp SA\) suy ra CD vuông góc với SC nên tam giác SCD là tam giác vuông tại C
Trong tam giác vuông SAB ta có :
\(\frac{SH}{SB}=\frac{SA^2}{SB^2}=\frac{SA^2}{SA^2+AB^2}=\frac{2a^2}{2a^2+a^2}=\frac{2}{3}\)
Gọi \(d_{1,};d_2\) lần lượt là khoảng cách từ B và H đến mặt phẳng (SCD) thì
\(\frac{d_2}{d_1}=\frac{SH}{SB}=\frac{2}{3}\Rightarrow d_2=\frac{2}{3}d_1\)
\(d_1=\frac{3V_{B.SCD}}{S_{SCD}}=\frac{SA.S_{BCD}}{S_{SCD}}\)
\(S_{NCD}=\frac{1}{2}AB.BC=\frac{1}{2}a^2\)
\(S_{SCD}=\frac{1}{2}SC.CD=\frac{1}{2}\sqrt{SA^2+AB^2+BC^2}.\sqrt{IC^2+ID^2}=a^2\sqrt{2}\)
Suy ra \(d_1=\frac{a}{2}\)
Vậy khoảng cách từ H đến mặt phẳng (SCD) là \(d_2=\frac{2}{3}d_1=\frac{a}{3}\)
Cho tam giác ABC có \(\widehat{A}=90^0\),kẻ AH vuông góc BC.Trên đường thẳng vuông góc với BC tại B,lấy điểm D (D không cùng nửa mặt phẳng bờ BC chứa điểm A). Sao cho BD=AH.
1)Chứng minh AB//DH
2)Biết \(\widehat{BAH}=35^0\).Tính số đo\(\widehat{ACB}\)