Xét hai tam giác vuông ABC và DEF có:
AC = DF (gt)
\(\widehat{ABC}=\widehat{DEF}\) (gt)
Vậy: \(\Delta ABC=\Delta DEF\left(cgv-gn\right)\).
Xét hai tam giác vuông ABC và DEF có:
AC = DF (gt)
\(\widehat{ABC}=\widehat{DEF}\) (gt)
Vậy: \(\Delta ABC=\Delta DEF\left(cgv-gn\right)\).
Các tam giác vuông ABC và DEF có \(\widehat{A}=\widehat{D}=90^0\). AC = DF. Hãy bổ sung thêm một điều kiện bằng nhau (về cạnh hay về góc) để \(\Delta ABC=\Delta DEF\) ?
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai ?
Các tam giác vuông ABC và DEF có \(\widehat{A}=\widehat{D}=90^0;AC=DE\) bằng nhau nếu có thêm
a) \(BC=EF\)
b) \(\widehat{C}=\widehat{E}\)
c) \(\widehat{C}=\widehat{F}\)
Tam giác ABC có M là trung điểm của BC, AM là tia phân giác của góc A. Kẻ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng :
a) \(MH=MK\)
b) \(\widehat{B}=\widehat{C}\)
Các tam giác vuông ABC và DEF có \(\widehat{A}=\widehat{D}=\)90 độ, AC=DF. Hãy bổ sung thêm một điều kiện bằng nhau về cạnh hay về góc để \(\Delta ABC=\Delta DEF\)
Cần thêm điều kiện:
\(1)\) Về cạnh
AB=DE theo trường hợp c-g-
hoặc BC=EF theo trường hợp cạnh huyền-cạnh góc vuông
\(2)\) Về góc
\(\widehat{c}=\widehat{F}\) theo trường hợp g-c-g
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC \(\left(H\in BC\right)\). Chứng minh rằng :
a) HB = HC
b) \(\widehat{BAH}=\widehat{CAH}\)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho \(\widehat{BAD}=\widehat{CAE}\). Kẻ BH vuông góc với AD (\(H\in AD\)). Kẻ CK vuông góc với AE (\(K\in AE\))
Chứng minh :
a) BD = CE
b) BH = CK
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D s/c BC=EF ,AC=DF.CMR 2tam giác này bằng nhau theo trường hợp c.g.c
Cho tam giác ABC cân tại A \(\left(\widehat{A}< 90^0\right)\). Vẽ \(BH\perp AC\left(H\in AC\right),CK\perp AB\left(K\in AB\right)\)
a) Chứng minh rằng AH = AK
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là phân giác của góc A
Cho tam giác DEF có DE = 5cm; DF = 12cm ; EF = 13cm.
a) Chứng minh tam giác DEF vuông.
b) Tia phân giác của góc E cắt DF tại M. Từ M kẻ MH vuông góc với EF. Chứng minh
DEM = HEM
c) Chứng minh tam giác MDH cân.