Vẽ tam giác ABC biết \(AC=2cm,\widehat{A}=90^0,\widehat{C}=60^0\) ?
Vẽ tam giác ABC biết \(AC=2cm,\widehat{A}=90^0,\widehat{C}=60^0\) ?
Trên mỗi hình 98, 99 có các tam giác nào bằng nhau ? Vì sao ?
Thảo luận (2)Hướng dẫn giải
Xem hình 98
∆ABC và ∆ABD có:
∠CAB = ∠DAB(gt)
AB là cạnh chung.
∠CBA = ∠DBA (gt)
Nên ∆ABC=∆ABD(g.c.g)
Xem hình 99.Ta có:
∠ABC + ∠ABD =1800 (Hai góc kề bù).
∠ACB + ∠ACE =1800
Mà ∠ABC = ∠ACB(gt)
Nên ∠ABD = ∠ACE
* ∆ABD và ∆ACE có:
∠ABD = ∠ACE (cmt)
BD=EC(gt)
∠ADB = ∠AEC (gt)
Nên ∆ABD=∆ACE(g.c.g)
* ∆ADC và ∆AEB có:
∠ADC = ∠AEB (gt)
∠ACD = ∠ABE (gt)
Ta có: DC = DB + BC
EB = EC + BC
Mà BD = EC (gt)
⇒ DC = EBNên ∆ADC=∆AEB(g.c.g)
(Trả lời bởi Quang Duy)
Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự ở A và B
a) Chứng minh rằng OA = OB
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và \(\widehat{OAC}=\widehat{OBC}\)
Thảo luận (3)Hướng dẫn giảia) ∆AOH và ∆BOH có:
∠AOH = ∠BOH (gt)
OH là cạnh chung
∠AHO = ∠OHB (=900)
∆AOH =∆BOH( g.c.g)
Vậy OA=OB.
b) ∆AOC và ∆BOC có:
OA = OB(cmt)
∠AOC = ∠BOC(gt)
OC cạnh chung.
Nên ∆AOC= ∆BOC(c.g.c)
Suy ra: CA=CB(cạnh tương ứng)
∠OAC = ∠OAB( góc tương ứng).
(Trả lời bởi Quang Duy)
Trên hình 100 ta có \(OA=OB;\widehat{OAC}=\widehat{OBD}\)
Chứng minh rằng AC = BD ?
Thảo luận (3)Hướng dẫn giải
Trên mỗi hình 101, 102, 103 có các tam giác nào bằng nhau ? Vì sao ?
Thảo luận (3)Hướng dẫn giải
Trên hình 104 ta có AB // CD, AC // BD. Hãy chứng minh rằng AB = CD, AC = BD ?
Thảo luận (3)Hướng dẫn giảiVẽ đoạn thẳng AD.
∆ADB và ∆DAC có:
ˆA1A1^= ˆD1D1^(so le trong AB//CD)
AD là cạnh chung.
A2^=D2^(So le trong, AC//BD)
Do đó ∆ADB=∆DAC(g.c .g)
Suy ra: AB=CD, BD=AC
(Trả lời bởi Quang Duy)
Xem thêm tại: http://loigiaihay.com/bai-38-trang-124-sach-giao-khoa-toan-7-tap-1-c42a5073.html#ixzz4elm8F0eT
Trên mỗi hình 105, 106, 107, 108 có các tam giác vuông nào bằng nhau ? Vì sao ?
Thảo luận (1)Hướng dẫn giải
Cho tam giác ABC ( \(\left(AB\ne AC\right)\), tia Ax đi qau trung điểm M của BC. Kẻ BE và CF vuông góc với Ax \(\left(E\in Ax,F\in Ax\right)\). So sánh các độ dài của BE và CF ?
Thảo luận (2)Hướng dẫn giảiHai tam giác vuông BME, CMF có:
BM=MC(gt)
ˆBMEBME^=ˆCMFCMF^(đối đỉnh)
Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).
Suy ra BE=CF.
(Trả lời bởi Quang Duy)
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Vẽ \(ID\perp AB\left(D\in AB\right),IE\perp BC\left(E\in BC\right),IF\perp AC\left(F\in AC\right)\)
Chứng minh rằng ID = IE = IF ?
Thảo luận (2)Hướng dẫn giảiHai tam giác vuông BID và BIE có:
BI là cạnh chung
B1=B2(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF.
(Trả lời bởi Quang Duy)
Cho tam giác ABC có \(\widehat{A}=90^0\) (h.109). Kẻ AH vuông góc với BC (\(H\in BC\) ). Các tam giác AHC và BAC có AC là cạnh chung. \(\widehat{C}\) là góc chung, \(\widehat{AHC}=\widehat{BAC}=90^0\), nhưng hai tam giác đó không bằng nhau
Tại sao ở đây không thể áp dụng trường hợp góc - cạnh - góc để kết luận \(\Delta AHC=\Delta BAC\) ?
Thảo luận (3)Hướng dẫn giải