Vẽ tam giác MNP biết MN = 2,5cm, NP = 3cm, PM = 4cm ?
Vẽ tam giác MNP biết MN = 2,5cm, NP = 3cm, PM = 4cm ?
Vẽ tam giác ABC biết độ dài mỗi cạnh bằng 3cm. Sau đó đo mỗi góc của tam giác ?
Thảo luận (1)Hướng dẫn giảiĐo mỗi góc của tam giác ABC ta được:
\(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)
(Trả lời bởi Lưu Hạ Vy)
Trên mỗi hình 68, 69, 70 có các tam giác nào bằng nhau ? Vì sao ?
Thảo luận (2)Hướng dẫn giảiHình 68.
Xét \(\Delta ABC;\Delta ABD\):
AC = AD (gt)
AB chung
BC = BD (gt)
=> \(\Delta ABC=\Delta ABD\left(c.c.c\right)\)
Hình 69.
Xét \(\Delta MNQ;\Delta QPM:\)
MN = QP (gt)
MQ chung
NQ = PM (gt)
=> \(\Delta MNQ=\Delta QPM\left(c.c.c\right)\)
Hình 70. Gọi giao điểm của HK và EI là O.
Xét tg HEI; tg KIE:
EH = KI
EI chung
HI = KE
=> tg HEI = tg KIE (c.c.c)
=> g HEI = g KIE hay g HEO = g OIK
Tương tự: tg HIK = tg KEH (c.c.c)
=> g IHK = g EKH hay g IHO = g OKE
Xét tg HEO; tg KIO:
g HEO = g OIK (c/m trên)
HE = KI
g EHO = g OKI (cộng góc)
=> tg HEO = tg KIO (g.c.g)
Tương tự: tg HIO = tg KEO (g.c.g)
(Trả lời bởi Hoàng Thị Ngọc Anh)
Xét bài toán : " \(\Delta AMB\) và \(\Delta ANB\) có MA = MB, NA = NB (h.71)
Chứng minh rằng : \(\widehat{AMN}=\widehat{BMN}\)
1) Hãy ghi giả thiết và kết luận của bài toán
2) Hãy sắp xếp bốn câu sau đây một cách hợp lí để giải bài toàn trên
a) Do đó \(\Delta AMN=\Delta BMN\) (c.c.c)
b) MN : cạnh chung
MA = MB (giả thiết)
NA = NB (giả thiết)
c) Suy ra \(\widehat{AMN}=\widehat{BMN}\) (hai góc tương ứng)
a) \(\Delta AMN=\Delta BMN\) có :
Thảo luận (1)Hướng dẫn giảiXét tg AMN và tg BMN có:
MN chung
MA = MB (gt)
NA = NB (gt)
=> tg AMN = tg BMN (c.c.c)
1) Giả thiết: \(\Delta AMN;\Delta BMN\) có: MA = MB và NA = NB.
Kết luận: tg AMN = tg BMN
2) \(\Delta AMN\) và \(\Delta BMN\) có:
MN: cạnh chung
MA = MB (giả thiết)
NA = NB (giả thiết)
Do đó \(\Delta AMN=\Delta BMN\left(c.c.c\right)\)
Suy ra \(\widehat{AMN}=\widehat{BMN}\) (2 góc t/ư).
(Trả lời bởi Hoàng Thị Ngọc Anh)
Cho hình 72, chứng minh rằng :
a) \(\Delta ADE=\Delta BDE\)
b) \(\widehat{DAE}=\widehat{DBE}\)
Thảo luận (2)Hướng dẫn giảia) Xét \(\Delta ADE;\Delta BDE:\)
AD = BD (gt)
ED chung
AE = BE (gt)
\(\Rightarrow\Delta ADE=\Delta BDE\left(c.c.c\right)\)
b) Vì \(\Delta ADE=\Delta BDE\) (câu a)
nên \(\widehat{DAE}=\widehat{DBE}\) (2 góc t/ư).
(Trả lời bởi Hoàng Thị Ngọc Anh)
Cho góc xOy (h.73). Vẽ cung tròn tâm O, cung này cắt Ox, Oy theo thứ tự ở A, B ((1)). Vẽ các cung tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau ở điểm C nằm trong góc xOY ((2), (3)). Nối O với C ((4)). Chứng minh rằng OC là tia phân giác của góc xOy ?
Thảo luận (3)Hướng dẫn giảixem hình vẽ:
Nối BC, AC.
∆OBC và ∆OAC có:
OB=OA(Bán kính)
BC=AC(gt)
OC cạnh chung
nên∆OBC = ∆OAC(c.c.c)
Nên ˆBOC=ˆAOCBOC^=AOC^(hai góc tương ứng)
Vậy OC là tia phân giác xOy.
(Trả lời bởi Hoàng Hiếu)
Cho tam giác ABC. Dùng thước và compa, vẽ các tia phân giác của các góc A, B, C ?
Thảo luận (1)Hướng dẫn giảiVẽ tia phân giác của góc A.
Vẽ cung trong tâm A, cung tròn này cắt AB, AC theo thứ tự ở M,N.
Vẽ các cung tròn tâm M và tâm N có cùng bán kính sao cho chúng cắt nhau ở điểm I nằm trong góc BAC.
Nối AI, ta được AI là tia phân giác của góc A.
Tương tự cho cách vẽ tia phân giác của các góc B,C( tự vẽ)
(Trả lời bởi Hoàng Hiếu)
Cho góc xOY và tia Am (h.74a)
Vẽ cung tròn tâm O bán kính, cung này cắt Ox, Oy theo thứ tự ở B, C. Vẽ cung tròn tâm A bán kính r, cung này cắt tia Am ở D (h.74b)
Vẽ cung tròn tâm D có bán kính bằng BC, cung này cắt cung tròn tâm A bán kính r ở E (h.74c)
Chứng minh rằng \(\widehat{DAE}=\widehat{xOy}\) ?
Thảo luận (3)Hướng dẫn giảiTam giác DAE và BOC có:
AD=OB(gt)
DE=BC(gt)
AE=OC(gt)
Nên ∆ DAE= ∆ BOC(c.c.c)
suy ra \(\widehat{DAE}\)=\(\widehat{BOC}\)(hai góc tương tứng)
vậy
\(\widehat{DAE}\)=\(\widehat{xOy}\).
(Trả lời bởi Hoàng Hiếu)
Cho đọan thẳng AB dài 4cm. Vẽ đường tròn tâm A bán kính 2cm và đường tròn tâm B bán kính 3cm, chúng cắt nhau ở C và D. Chứng minh rằng AB là tia phân giác của góc CAD ?
Thảo luận (1)Hướng dẫn giải∆BAC và ∆ BAD có: AC=AD(gt)
BC=BD(gt)
AB cạnh chung.
Nên ∆ BAC= ∆ BAD(c.c.c)
Suy ra ˆBACBAC^ = ˆBADBAD^(góc tương ứng)
Vậy AB là tia phân giác của góc CAD
(Trả lời bởi Hoàng Hiếu)
Vẽ tam giác ABC biết độ dài mỗi cạnh bằng 2,5 cm. Sau đó mỗi góc của tam giác ?
Thảo luận (1)Hướng dẫn giảiMỗi góc của tam giác ABC bằng \(60^0\)
(Trả lời bởi Nguyen Thuy Hoa)