Chương 1: KHỐI ĐA DIỆN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Võ Thùy Nhung

Cho hình chóp A.ABCD có đáy là hình thang \(\widehat{ABC}=\widehat{BAD}=90^0,BA=BC=a;AD=2a\). Cạnh bên SA vuông góc với mặt phẳng đáy và \(SA=a\sqrt{2}\). Gọi H là hình chóp vuông góc của A lên SB. Chứng minh tam giác SCD là tam giác vuông và tính theo a khoảng cách từ H đến mặt phẳng (SCD)

Nguyễn Hòa Bình
2 tháng 4 2016 lúc 14:17

S B H C I A D

Gọi I là trung điểm của AD.

Ta có : \(IA=ID=IC=a\Rightarrow CD\perp AC\)

Mặt khác, \(CD\perp SA\) suy ra CD vuông góc với SC nên tam giác SCD là tam giác vuông tại C

Trong tam giác vuông SAB ta có :

\(\frac{SH}{SB}=\frac{SA^2}{SB^2}=\frac{SA^2}{SA^2+AB^2}=\frac{2a^2}{2a^2+a^2}=\frac{2}{3}\)

Gọi \(d_{1,};d_2\) lần lượt là khoảng cách từ B và H đến mặt phẳng (SCD) thì

\(\frac{d_2}{d_1}=\frac{SH}{SB}=\frac{2}{3}\Rightarrow d_2=\frac{2}{3}d_1\)

\(d_1=\frac{3V_{B.SCD}}{S_{SCD}}=\frac{SA.S_{BCD}}{S_{SCD}}\)

\(S_{NCD}=\frac{1}{2}AB.BC=\frac{1}{2}a^2\)

\(S_{SCD}=\frac{1}{2}SC.CD=\frac{1}{2}\sqrt{SA^2+AB^2+BC^2}.\sqrt{IC^2+ID^2}=a^2\sqrt{2}\)

Suy ra \(d_1=\frac{a}{2}\)

Vậy khoảng cách từ H đến mặt phẳng (SCD) là \(d_2=\frac{2}{3}d_1=\frac{a}{3}\)


Các câu hỏi tương tự
Trang Võ Thị
Xem chi tiết
Dao Nguyen
Xem chi tiết
Phạm Minh Khánh
Xem chi tiết
Lê Tấn Sanh
Xem chi tiết
Nguyễn Thanh Uyên
Xem chi tiết
Nguyễn Hồ Kim Trang
Xem chi tiết
Võ Thị Hoài Linh
Xem chi tiết
Đỗ Phương Nam
Xem chi tiết
Bảo Duy Cute
Xem chi tiết