Giải giúp mình giải bài này với :
Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA = a và vuông góc với đáy. Gọi M là trung điểm SD.
a) Tính khoảng cách giữa AB và SC
b) Tính thể tích MABC
Hỏi đáp
Giải giúp mình giải bài này với :
Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA = a và vuông góc với đáy. Gọi M là trung điểm SD.
a) Tính khoảng cách giữa AB và SC
b) Tính thể tích MABC
làm sao c/m góc giữa (SBC) vs (ABC) bây h ạ
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SD=\frac{3a}{2}\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp s.ABCD và khoảng cách từ A đến mặt phẳng (SBD)
Gọi H là trung điểm của AB, suy ra \(SH\perp\left(ACBD\right)\)
Do đó \(SH\perp HD\) ta có :
\(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)
Suy ra \(V_{s.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{a^2}{3}\)
Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H lên SK. Ta có :
\(\begin{cases}BD\perp HK\\BD\perp SH\end{cases}\) \(\Rightarrow BH\perp\) (SHK)
=> \(BD\perp HE\) mà \(HE\perp SK\) \(\Rightarrow HE\perp\) (SBD)
Ta có : HK=HB.\(\sin\widehat{KBH}\)\(=\frac{a\sqrt{2}}{4}\)
Suy ra \(HE=\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{a}{3}\)
Do đó \(d\left(A:\left(SBD\right)\right)\)=2d(H; (SBD)) =3HE=\(\frac{2a}{3}\)
Cho lăng trụ ABC.A'B'C' có đáy là tam tác đều cạnh a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm của cạnh AB, góc giữa đường thẳng A'C và mặt phẳng đáy bằng 60 độ. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách từ điểm B đến mặt phẳn (ACC'A')
Gọi H là trung điểm của AB, \(A'H\perp\left(ABC\right)\) và \(\widehat{A'CH}=60^0\)
Do đó \(A'H=CH.\tan\widehat{A'CH}=\frac{3a}{2}\)
Do đó thể tích khối lăng trụ là \(V_{ABC.A'B'C'}=\frac{3\sqrt{3}a^3}{8}\)
Gọi I là hình chiếu vuông góc của H lên AC; K là hình chiếu vuông góc của H lên A'I. Suy ra :
\(HK=d\left(H,\left(ACC'A'\right)\right)\)
Ta có :
\(HI=AH.\sin\widehat{IAH}=\frac{\sqrt{3}a}{4}\);
\(\frac{1}{HK^2}=\frac{1}{HI^2}+\frac{1}{HA'^2}=\frac{52}{9a^2}\)
=>\(HK=\frac{3\sqrt{13}a}{26}\)
Do đó \(d\left(B;\left(ACC'A'\right)\right)=2d\left(H;\left(ACC'A'\right)\right)=2HK=\frac{3\sqrt{13}a}{13}\)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt phẳng bên ABC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SA, BC
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
Cho hình chóp S.ABC có đáy là tam giác vuông tại A. \(\widehat{ABC}=30^o\), SBC là tam giác đều cạnh a và mặt bên SBC vuông góc với đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)
Gọi H là trung điểm của BC, suy ra \(SH\perp BC\). Mà (SBC) vuông góc với (ABC) theo giao tuyến BC, nên \(SH\perp\left(ABC\right)\)
Ta có : \(BC=a\Rightarrow SH=\frac{a\sqrt{3}}{2}\); \(AC=BC\sin30^0=\frac{a}{2}\)
\(AB=BC.\cos30^0=\frac{a\sqrt{3}}{2}\)
Do đó \(V_{S.ABC}=\frac{1}{6}SH.AB.AC=\frac{a^3}{16}\)
Tam giác ABC vuông tại A và H là trung điểm của BC nên \(HA=HB\). Mà \(SH\perp\left(ABC\right)\), suy ra \(SA=SB=a\). Gọi I là trung điểm của AB, suy ra \(SI\perp AB\)
Do đó \(SI=\sqrt{SB^2-\frac{AB^2}{4}}=\frac{a\sqrt{13}}{4}\)
Suy ra \(d\left(C;\left(SAB\right)\right)=\frac{3V_{S.ABC}}{S_{SAB}}=\frac{6V_{S.ABC}}{SI.AB}=\frac{a\sqrt{39}}{13}\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt SAB là tam giác đều và nằm trong mặt phẳng vuông hóc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD và tính khoảng cách từ A đến mặt phẳng (SCD) theo a
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
2) Ta có tam giác SAB đều nên SA =a3√2
suy ra V=13SABCD.SH=a33√6
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Cạnh bên SA vuông góc với đáy, \(\widehat{BAD}=120^0\). M là trung đierm của cạnh BC và \(\widehat{SMA=45^0}\). Tính thể tích khối chóp S.ABCD và tính khoảng cách từ D đến mặt phẳng (SBC) theo a
\(\widehat{BAD}=120^0\Rightarrow\widehat{ABC}\Rightarrow\Delta ABC\) đều
\(\Rightarrow AM=\frac{a\sqrt{3}}{2}\Rightarrow S_{ABCD}=\frac{a^3\sqrt{3}}{2}\)
Tam giác SAM vuông tại A có \(\widehat{SMA}=45^0\Rightarrow\) Tam giác SAM vuông tại A : SA = AM = \(\frac{a\sqrt{3}}{2}\)
Do đó \(V_{S.ABCD}=\frac{1}{3}SA.S_{ABCD}=\frac{a^3}{4}\)
Do AD song song với BC nên d(D;(SBC))=d(A,(SBC))
Gọi H là hình chiếu vuông góc của A trên SM
Ta có : \(\begin{cases}AM\perp BC\\SA\perp BC\end{cases}\)\(\Rightarrow BC\perp\cdot\left(SAM\right)\)
\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\Rightarrow d\left(A,\left(SBC\right)\right)=AH\)
Ta có :
\(AH=\frac{AM\sqrt{2}}{2}=\frac{a\sqrt{6}}{4}\Rightarrow d\left(D,\left(SBC\right)\right)=\frac{a\sqrt{6}}{4}\)
Cho lăng trụ đều ABC.A'B'C' có AB = a và đường thẳng A'B tạo với đáy một góc bằng 60 độ. Gọi M và N lần lượt là trung điểm của các cạnh AC và B'C'. Tính theo a thể tích củ khối lăng trụ ABC.A'B'C' và độ dài của MN
\(AA'\perp\left(ABC\right)\Rightarrow\widehat{A'BA}\) là góc giữa A'B với đáy
Suy ra : \(\widehat{A'BA}=60^o\Rightarrow AA'=AB.\tan\widehat{A'BA}=a\sqrt{3}\)
Do đó \(V_{ABC.A'B'C'}=AA'.S_{\Delta ABC}=\frac{3a^2}{4}\)
Gọi K là trung điểm cạnh BC, suy ra Tam giác MNK vuông tại K, có :
\(MK=\frac{AB}{2}=\frac{a}{2};NK=AA'=a\sqrt{3}\)
Do đó : \(MN=\sqrt{MK^2+NK^2}=\frac{a\sqrt{13}}{2}\)
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là H thuộc cạnh AB sao cho HA=2HB. Góc giữa 2 đường thẳng SC và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC và tính khoảng cách giữa 2 đường thẳng SA và BC theo a
Ta có : \(\widehat{SCH}\) là góc giữa SC và mặt phẳng (ABC).
\(\Rightarrow\widehat{SCH}=60^0\)
Gọi D là trung điểm cạnh AB. Ta có :
\(HD=\frac{a}{6}\), CD= \(\frac{a\sqrt{3}}{2}\)
\(HC=\sqrt{HD^2+CD^2}=\frac{a\sqrt{7}}{3}\)
\(SH=HC.\tan60^0=\frac{a\sqrt{21}}{3}\)
\(V_{s.ABC}=\frac{1}{3}.SH.S_{\Delta ABC}=\frac{1}{3}.\frac{a\sqrt{21}}{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{7}}{12}\)
Kẻ Ax song song với BC, gọi N, K lần lượt là hình chiếu vuông góc của H lên Ax và SN. Ta có BC song song với mặt phẳng (SAN) và \(BA=\frac{3}{2}HA\)
Nên \(d\left(SA.BC\right)=d\left(B,\left(SAN\right)\right)=\frac{3}{2}d\left(H.\left(SAN\right)\right)\)
\(AH=\frac{2a}{3}\); \(HN=AH.\sin60^0=\frac{a\sqrt{3}}{3}\)
\(HK=\frac{SH.HN}{\sqrt{SH^2+HN^2}}=\frac{a\sqrt{42}}{12}\)
Vậy \(d\left(SA.BC\right)=\frac{a\sqrt{42}}{8}\)
Góc 60 là góc SCH. Dễ dàng tính được V
Trong (ABC), kẻ At // BC, Cz//AB, giao At=N
d(sa,bc)=d(bc, (SAN))=d(B, (SAN))=3/2 d(H, (SAN)).
Từ H kẻ HE vuông AN
Trong (SHE) kẻ HF vuông SE
=> d(H(SAN))=HF