Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yu gi Oh Magic
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 6 2021 lúc 9:40

Đề bài sai với \(a=b=c=2\)

Ngô Bá Hùng
28 tháng 6 2021 lúc 9:43

đề đúng nhớ áp dụng AM-GM

Ngô Bá Hùng
28 tháng 6 2021 lúc 9:50

AD bđt AM-GM cho 3 số

\(\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+C}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c}{a^3\left(b+c\right)}.\dfrac{\left(b+c\right)}{4bc}.\dfrac{1}{2b}}=\dfrac{3}{2a}\)

\(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}\ge\dfrac{3}{2a}-\dfrac{3}{4b}-\dfrac{1}{4c}\)

thiết lập bđt tương tự r cộng lại \(\Rightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\left(\dfrac{3}{2}-\dfrac{3}{4}-\dfrac{1}{4}\right)\left(a+b+c\right)=\dfrac{1}{2}\left(a+b+c\right)\)

tnt
Xem chi tiết
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
28 tháng 4 2017 lúc 1:40

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

ILoveMath
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Nhã Doanh
3 tháng 4 2018 lúc 8:11

B1:

\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Xét hiệu:

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

=> BĐT luôn đúng

*

Ta có:

\(a< b+c\Rightarrow a^2< ab+ac\)

\(b< a+c\Rightarrow b^2< ab+ac\)

\(c< a+b\Rightarrow a^2< ac+bc\)

Cộng từng vế bất đẳng thức ta được:

\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Nhã Doanh
3 tháng 4 2018 lúc 8:40

B2:

Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)

Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)

Suy ra:

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

=> ĐPCM

 Mashiro Shiina
2 tháng 4 2018 lúc 22:02

Làm hết chỗ này chắc hết tuổi thanh xuân của t,

câu b dấu "=" có xảy ra nhé,fix đề đy bạn eiiii

Lil Shroud
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 16:42

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

Hoàng Anh Thắng
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 3 2022 lúc 23:36

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Hoàng Anh Thắng
Xem chi tiết
Hoàng Anh Thắng
14 tháng 3 2022 lúc 22:02

chết đăng nhầm sogy nha

 Mashiro Shiina
Xem chi tiết
 Mashiro Shiina
21 tháng 10 2018 lúc 12:10

@Nguyễn Thanh Hằng đọc xong xóa đii nha