Cho ab + bc +ac = abc và a + b + c = 1
Tính M = (a - 1)2020 + (b - 1)2021 + (c-2)2020
Câu 19: Cho a, b, c là các số thực sao cho:
( a+b+c)(ab+bc+ca)=2020 và abc=1=2020.
Tính P=(b2c+2020)(c2a+2020)(a2b+2020).
Cho abc=2020. Rút gọn A=\(\frac{2020a}{ab+2020a+2020}+\frac{b}{bc+b+2020}+\frac{c}{ac+c+1}\)
thay 2020 = abc vào biểu thức A ta được :
\(A=\frac{2020a}{ab+2020a+2020}+\frac{b}{bc+b+2020}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abc.a}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac+1+c}{ac+c+1}=1\)
VẬy A=1
Cho a,b,c thỏa mãn a+b+c=3, ab+bc+ca=3, tính A=(a-1)2019+(b2-1)2020+(c3-1)2021
Nhầm là, tính A=(a-1)2019+(b2-1)2020+(c3-1)2021
Ta có : \(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)=9-2\times6=3\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
Mà \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow A=\left(1-1\right)^{2019}+\left(1^2-1\right)^{2020}+\left(1^3-1\right)^{2021}\)
\(=0^{2019}+0^{2020}+0^{2021}=0\)
Cho a,b,c thõa mãn : a^2 + b^2 +c^2 - ab -bc- ca = 0. Tính: P = (a-b)^2020 + (b-c)^2021 + (c-a)^2022
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)
Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)
=> a = b = c
\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)
\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)
= 0
cho a,b,c là số hữu tỉ thỏa mãn ab+bc+ac=2020
c/m \(\sqrt{\frac{\left(a^2+2020\right)\cdot\left(b^2+2020\right)}{c^2+2020}}\)là số hữu tỉ
\(M=\sqrt{\frac{\left(a^2+2020\right)\left(b^2+2020\right)}{c^2+2020}}\)
\(=\sqrt{\frac{\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)}{c^2+ab+bc+ac}}\)
\(=\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}{\left(c+a\right)\left(c+b\right)}}\)
\(=a+b\) là 1 số hữu tỉ
=> M là 1 số hữu tỉ (đpcm)
So sánh:
A=2021^2020+2/2021^2020-1 và B=2021^2020/2021^2020-3
Cho a+b+c=3
C/m:\(\frac{1}{a^2+b^2+c^2}+\frac{2019}{ab+bc+ac}\ge\frac{2020}{3}\)
Cho 3(a + b + c)^2 + 4 |ab + bc + ca| = 0. Tính : a^2020 – b^2021 + c^2022. Nhanh lên mn chiều nay mik học rồi
Ta có: \(3\left(a+b+c\right)^2\ge0\forall a,b,c\)
\(4\left|ab+bc+ca\right|\ge0\forall a,b,c\)
Do đó: \(3\left(a+b+c\right)^2+4\left|ab+bc+ca\right|\ge0\forall a,b,c\)
Dấu '=' xảy ra khi a=b=c=0
Ta có: \(a^{2020}-b^{2021}+c^{2022}\)
\(=0^{2020}-0^{2021}+0^{2022}\)
=0
Cho (a+b+c)2 = 3(ab+bc+ca). Tinh P = \(\frac{a^{2020}+1}{a^{2020}+b^{2020}+c^{2020}+3}\)
\(\left(a+b+c\right)^2=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow P=\frac{a^{2020}+1}{a^{2020}+a^{2020}+a^{2020}+3}=\frac{a^{2020}+1}{3\left(a^{2020}+1\right)}=\frac{1}{3}\)