Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
oooloo
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 12 2020 lúc 13:32

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 0, không mất tính tổng quát, giả sử đó là a và b

\(\Rightarrow ab\ge0\)

Mặt khác do \(c\le1\Rightarrow\left\{{}\begin{matrix}1-c^2\ge0\\1-c\ge0\end{matrix}\right.\)

\(\Rightarrow2ab\left(1-c\right)+1-c^2\ge0\)

\(\Leftrightarrow2ab+1\ge2abc+c^2\)

\(\Leftrightarrow a^2b^2+2ab+1\ge a^2b^2+2abc+c^2\)

\(\Leftrightarrow\left(ab+c\right)^2\le\left(1+ab\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\) (1)

Từ giả thiết:

\(a^2+b^2+c^2\le1+2abc\Leftrightarrow a^2b^2-2abc+c^2\le1-a^2-b^2+a^2b^2\)

\(\Leftrightarrow\left(ab-c\right)^2\le\left(1-a^2\right)\left(1-b^2\right)\) (2)

Nhân vế với vế (1) và (2):

\(\left(ab+c\right)^2\left(ab-c\right)^2\le\left(1+a^2\right)\left(1+b^2\right)\left(1-a^2\right)\left(1-b^2\right)\)

\(\Leftrightarrow1+2a^2b^2c^2\ge a^4+b^4+c^4\) (đpcm)

Dấu "=" xảy ra khi 1 số bằng 1 và 2 số bằng nhau

Hoang Yen Pham
Xem chi tiết
Trên con đường thành côn...
12 tháng 7 2021 lúc 20:03

undefined

Trên con đường thành côn...
12 tháng 7 2021 lúc 20:13

undefined

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 22:25

1) Ta có: \(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)

\(=\left(a^4-b^4\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)

\(=\left(a^8-b^8\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\left(a^{32}+b^{32}\right)\)

\(=\left(a^{16}-b^{16}\right)\left(a^{16}+b^{16}\right)\left(a^{32}+b^{32}\right)\)

\(=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\)

\(=a^{64}-b^{64}\)

Nguyễn Đức Duy
Xem chi tiết
Nguyễn Trịnh Phú Vinh
27 tháng 9 2023 lúc 13:30

Ta có \(a^4+b^4\ge2a^2.b^2\) (Bất đẳng thức Cô si với \(a^2;b^2\ge0\) )
Tương tự \(b^4+c^4\ge2b^2.c^2;a^4+c^4\ge2a^2.c^2\)
Do đó: \(a^4+b^4+c^4\ge\dfrac{2a^2b^2+2b^2c^2+2a^2c^2}{2}=a^2b^2+b^2c^2+a^2c^2\)(1)
Ta lại có:\(a^2b^2+b^2c^2\ge2ab^2c;b^2c^2+a^2c^2\ge2abc^2;a^2c^2+a^2b^2\ge2a^2bc\)
Nên\(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)=3abc\left(a+b+c=3,gt\right)\)
(1);(2) => \(a^4+b^4+c^4\ge3abc\) ;đẳng thức xảy ra khi a = b = c = 1 (*)
Giả sử: \(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b+c\right)-3c\left(a+b\right)\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-ab-bc-ac\right]\ge0\\2.3\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\\ \Leftrightarrow3\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\ge0\\\Leftrightarrow3\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)
Đúng mới mọi a,b,c ϵR 
Vậy \(a^3+b^3+c^3\ge3abc\) và đẳng thức xảy ra khi a=b=c=(a+b+c)/3 =1(**)
Ta lại có \(a^4\ge a^3;b^4\ge b^3;c^4\ge c^3\) mà a+b+c = 3
Nên \(a^4+b^4+c^4>a^3+b^3+c^3\) (***)
Từ (*);(**);(***) ta có điều phải chứng minh và đẳng thức xảy ra khi a= b=c=1
 

Vũ Trần Giang
18 tháng 4 2024 lúc 18:58

Tôi có cách chứng minh bằng đồng bậc hóa bất đẳng thức như sau:

ta sẽ chứng minh:

\(3\left(a^4+b^4+c^4\right)>=\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
<=> \(2\left(a^4+b^4+c^4\right)>=ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)

mà ta có theo bất đẳng thức AMGM \(a^4+b^4>=\dfrac{\left(a^2+b^2\right)^2}{2}>=\dfrac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)
làm tương tự rồi cộng lại, ta có đpcm.

TRƯƠNG THÀNH AN
Xem chi tiết

image.png

kapu kotepu
Xem chi tiết
TRƯƠNG THÀNH AN
Xem chi tiết

image.png

dmdaumoi
Xem chi tiết
Huyền
26 tháng 7 2021 lúc 14:22

Đây nhé! Tích giúp c nhaundefined

Hang Vu
Xem chi tiết
BuBu siêu moe 방탄소년단
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 21:31

\(a^4+b^4=a^4+4a^2b^2+b^4-4a^2b^2\)

\(=\left(a^2+b^2\right)-4a^2b^2\)

\(=\left[\left(a-b\right)^2-2ab\right]^2-4\cdot\left(ab\right)^2\)

\(=\left(1^2-2\cdot12\right)^2-4\cdot12^2\)

\(=\left(1-24\right)^2-4\cdot144\)

\(=\left(-23\right)^2-576=-47\)

Nguyễn Việt Lâm
27 tháng 7 2021 lúc 21:32

\(a^2+b^2=\left(a-b\right)^2+2ab=1^2+2.12=25\)

\(a^4+b^4=\left(a^2+b^2\right)-2\left(ab\right)^2=25^2-2.12^2=337\)

Ha My
Xem chi tiết
Kien Nguyen
4 tháng 10 2017 lúc 13:20

theo bài ta có:

a + b + c = 0

=> a = -(b + c)

=> a2 = [-(b + c)]2

=> a2 = b2 + 2bc + c2

=> a2 - b2 - c2 = 2bc

=> ( a2 - b2 - c2)2 = (2bc)2

=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2

=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2

=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2

=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2

=> 2(a4 + b4 + c4) = 1

=> a4 + b4 + c4 = \(\dfrac{1}{2}\)

Silverbullet
4 tháng 10 2017 lúc 12:04

Đề viết sai rồi bạn

Với a+b+c=0

CMR : a4+b4+c4=2(ab+bc+ac)2