CMR Nếu a = b + c thì \(\dfrac{a^3+b^3}{a^3+c^3}=\dfrac{a+b}{a+c}\)
Cho m=ab(a+b-c)+bc(b+c-a)+ca(c+a-b). CMR a+b+c⋮⋮12 thì M⋮⋮12
Mong các bạn giúp mik giải ạ!
Cmr nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c=0\) (a,b,c khác 0) thì \(\dfrac{a^6+b^6+c^6}{a^3+b^3+c^3}=abc\)
CMR : Nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 và a + b + c = abc thì \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Bài 1: Với a,b,c khác 0. CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c^{ }}\)
Bài 2: CMR: Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) và a + b +c = abc thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) với điều kiện a,b,c khác 0 và a+b+c khác 0.
a) Cho a là số nguyên tố lớn hơn 3. CMR: \(a^2-1\) chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\) chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\) chia hết cho 240
Bài 1: CMR
a) (a2 + b2 ) (x2 + y2) = (ax - by)2 + (bx + ay)2
b) Nếu (a + b + c + d ) (a - b - c + d) = (a - b + c - d) ( a + b - c - d) thì \(\dfrac{a}{c}=\dfrac{b}{d}\) ( với a,b,c,d \(\ne\) 0 )
c) Nếu a + b + c = 4m thì 2ab + b2 + a2 - c2 = 16m2 - 8mc
d) Nếu (a - b)2 + (b - c)2 + (c - a)2 = 6abc thì a3 + b3 + c3 = 3abc (a + b + c +1)
Cho biểu thức :\(M=\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}\)
CMR:
a) nếu a, b, c là độ dài của 3 cạnh tam giác thì M>1
b)Nếu M = 1 thì 2 trong ba phân thức đã cho của biểu thức M bằng 1, phân thức còn lại bằng -1
Cho a; b; c là ba cạnh tam giác. CMR nếu (a+b)(b+c)(c+a)=8abc thì ABC là tam giác đều
Các bạn giúp mình bài này nhưng đừng sử dụng bất đẳng thức Cosi nhé, mình chưa học đến.