Cho a, b, c > 0 thỏa mãn ab+bc+ca=12
Tìm GTNN của M=a4+b4+c4
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 0. CMR:
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
Cho a+b+c+ab+bc+ca=6. Cmr \(a^2+b^2+c^2\ge3\)
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
C/m: \(\dfrac{a-b}{ab}+\dfrac{b-c}{bc}+\dfrac{c-a}{ca}=\dfrac{a-b}{ab}.\dfrac{b-c}{bc}.\dfrac{c-a}{ca}\)
Mk cần lắm rùi các bạn ơi , giúp mk nha
Cho a,b,c khác 0 thỏa mãn \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
CMR \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ca}{\left(c+a\right)\left(a+b\right)}\)
Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng:
\(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ca}{c^4+a^4+ca}\)
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
CMR với a, b, c > 0 thì :
a) \(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\ge a+b+c\)
b)\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{a+b+c}{2}\)