Bài 1:
$a^2-1=(a-1)(a+1)$
Vì $a$ là số nguyên tố lớn hơn $3$ nên $a$ không chia hết cho $3$. Suy ra $a$ chia $3$ dư $1$ hoặc $2$
Nếu $a$ chia $3$ dư $1\Rightarrow a-1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$
Nếu $a$ chia $3$ dư $2\Rightarrow a+1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$
Vậy $a^2-1\vdots 3(1)$
Mặt khác, $a$ là số nguyên tố lớn hơn $3$ thì $a$ lẻ. Do đó $a$ có dạng $4k+1$ hoặc $4k+3$ ($k\in\mathbb{Z}$)
Nếu \(a=4k+1\Rightarrow a^2-1=(4k+1)^2-1=16k^2+8k\vdots 8\)
Nếu \(a=4k+3\Rightarrow a^2-1=(4k+3)^2-1=16k^2+24k+8\vdots 8\)
Vậy $a^2-1\vdots 8(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $a^2-1\vdots 24$ (đpcm)
Bài 2:
Từ bài 1 ta thấy rằng với mọi số $a$ là số nguyên tố lớn hơn 3 thì $a^2-1\vdots 24(1)$
Tương tự $b^2-1\vdots 24(2)$
Từ \((1);(2)\Rightarrow (a^2-1)-(b^2-1)\vdots 24\)
\(\Leftrightarrow a^2-b^2\vdots 24\) (đpcm)
1) vì a>3 nên a có dạng a=3k+1 hoặc a=3k+2
với a=3k+1 thì a^2-1=(a+1)(a-1)=(3k+2)3k chia hết cho 3
với a=3k+2 thì a^2-1=(a+1)(a-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố a>3 thì a^2-1 chia hết cho 3 (1)
mặt khác cũng vì a>3 nên a là số lẻ =>a+1,a-1 là 2 số chẵn liên tiếp
=>trong hai sô a+1,a-1 tồn tại một số là bội của 4
=>a^2-1 chia hết cho 8 (2)
từ (1) và (2) => a^2-1 chia hết cho 24 với mọi số nguyên tố a>3
=> đpcm
2) Vì :
a^2; b^2 là số chính phương
a,b không chia hết cho 3
Nên a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (1)
Ta có :
(a^2 - 1) - (b^2 - 1) = (a - 1)(a + 1) - (b - 1)(b + 1) chia hết cho 8 (2)
Vì :
(a - 1); (a + 1)(a - 1); (a + 1) là 2 số chẵn liên tiếp
(b - 1); (b + 1)(b - 1), (b + 1) là 2 số chẵn liên tiếp
Từ (1), (2)
=> a^2 - b^2 chia hết cho 3.8
=> a^2 - b^2 chia hết cho 24