a) Cho a là số nguyên tố lớn hơn 3. CMR: \(a^2-1\) chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\) chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\) chia hết cho 240
1. CHo số nguyên tố p thỏa mãn p+6 cũng là số nguyên tố . Chứng minh \(p^2+2021\) là hợp số
2.Tìm tất cả các số tự nhiên a để \(a^2+3a\) là số chính phương
Cho p là số nguyên tố lớn hơn 3. CMR : \(3^p-2^p-1⋮42p\)
1, CMR 2 số A = 2n +1 và B= \(\dfrac{n\left(n+1\right)}{2}\) là 2 số nguyên tố cùng nhau( n ϵ N)
2, Tìm n ϵ N sao cho n3 -8n2 +2n chia hết cho n2 +1
1.
a, Tìm số tự nhiên n để \(n^4+4^n\) là số nguyên tố
b, Đặt A= 1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
CMR 4A+1 là số chính phương
c, Cho a,b,c thuộc Z. CMR (a-b)^3+(b-c)^3+(c-a)^3 chia hết cho 6
Cho 1 số có 2 chữ số. Tỉ số giữa chữ số hàng chục và chữ số hàng đơn vị là \(\dfrac{2}{3}\) . Nếu viết chữ số 1 xen vào giữa 2 chữ số của nó thì được 1 số lớn hơn số đã cho là 370. Tìm số đã cho.
cho p là số nguyên tố lớn hơn 3. Chứng minh rằng (p - 1)(p+1) ⋮ 24
Cho p là số nguyên tố khác 2 và a,b là hai số tự nhiên lẻ sao cho a+b chia hết cho p và a-b chia hết cho p-1. Chứng minh rằng \(a^b+b^a\) chia hết cho p