Ba đơn thức sau có thể cùng nhận giá trị dương được không ?Tại sao ?
\(A=-\dfrac{3}{4}x^2y^3z^5.\) \(B=-\dfrac{1}{2}xy^2z^3.\) \(C=-\dfrac{2}{5}x^4yz^2.\)
\(\dfrac{-3}{8}x^2y\dfrac{2}{3}xy^2z^2\)
đơn thúc trên có thể nhận giá trị dương được ko
\(=\dfrac{-1}{4}x^3y^3z^2\)
Đa thức chỉ dương khi xy<0
Ba đơn thức sau có thể cùng nhận giá trị dương được không? Tại sao?
\(A=-\frac{3}{4}x^2y^3z^5.\) \(B=-\frac{1}{2}xy^2z^3.\) \(C=-\frac{2}{5}x^4yz^2.\)
BT17: Cho 3 đơn thức \(-\dfrac{3}{8}x^2z,\dfrac{2}{3}xy^2z^2,\dfrac{4}{5}x^3y\)
a, Tính tích của 3 đơn thức trên
b, Tính giá trị của mỗi đơn thức và giá trị của tích ba đơn thức tại x=-1, y=-2, z=-3
a: A=-3/8x^2z*2/3xy^2z^2*4/5x^3y=-1/5x^6y^3z^3
b: Khi x=-1;y=-2;z=-3 thì -3/8x^2z=-3/8*(-1)^2*(-3)=9/8
2/3xy^2z^2=2/3*(-1)*(2*3)^2=-2/3*36=-24
4/5x^3y=4/5*(-1)^3*(-3)=12/5
A=-1/5*(-1)^6*(-2)^3*(-3)^3=-216/5
a) \(\left(-\dfrac{3}{8}x^2z\right).\left(\dfrac{2}{3}xy^2z^2\right).\dfrac{4}{5}x^3y=-\dfrac{1}{5}x^6y^3z^3\)
b) Gía trị đơn thức :
\(-\dfrac{1}{5}.\left(-1\right)^6\left(-2\right)^3.3^3=-\dfrac{1}{5}.1.\left(8\right).27=\dfrac{216}{5}\)
BT17: Cho 3 đơn thức \(-\dfrac{3}{8}x^2z,\dfrac{2}{3}xy^2z^2,\dfrac{4}{5}x^3y\)
a, Tính tích hai đơn thức trên
b, Tính giá trị của mỗi đơn thức và giá trị của tích ba đơn thức tại x=-1, y=-2, z=-3
Bài tập `17`
`a,` ` @` Tớ nghĩ là tính tích ba đơn thức chứ nhỉ ?
\(-\dfrac{3}{8}x^2z.\dfrac{2}{3}xy^2z^2.\dfrac{4}{5}x^3y\\ =\left(-\dfrac{3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y^2.y\right)\left(z.z^2\right)\\ =-\dfrac{1}{5}x^6y^3z^3\)
`b,` Tại `x=-1 ; y=-2;z=-3`
Thì \(-\dfrac{3}{8}x^2z=-\dfrac{3}{8}.\left(-1\right)^2.\left(-3\right)=-\dfrac{3}{8}.1.\left(-3\right)=\dfrac{9}{8}\\ \dfrac{2}{3}xy^2z^2=\dfrac{2}{3}.\left(-1\right)\left(-2\right)^2\left(-3\right)^2=\dfrac{2}{3}.\left(-1\right).4.9=-24\\ \dfrac{4}{5}x^3y=\dfrac{4}{5}.\left(-1\right)^3.\left(-2\right)=\dfrac{4}{5}.\left(-1\right).\left(-2\right)=\dfrac{8}{5}\)
Cho các đơn thức:
\(A=\dfrac{1}{3}xy.\left(-\dfrac{2}{5}xy^2z\right)^2\) \(B=\dfrac{4}{7}xy^2z.0,5yz\) \(C=\left(-\dfrac{2}{3}\right)^2x^2y^2.25yz\left(-\dfrac{1}{4yz}\right)^2\)
\(D=-4y.\left(xy\right)^3.\dfrac{1}{8}\left(-x\right)^5\) \(E=\left(-\dfrac{2}{3}y\right)^3\left(-x^2y\right)^5\left(-3x\right)^2\)
a)Thu gọn,tìm bậc,hệ số,phần biến của các đơn thức trên.
b)CMR trong ba đơn thức A;B;C có ít nhất một đơn thức dương với x;y;z khác 0.
c)So sánh giá trị của D và E tại x=-1 và y=\(\dfrac{1}{2}\).
d)Với giá trị nào của x và y thì D nhận giá trị dương.
Tính giá trị của biểu thức
A=
\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
Bài 2: Trong những biểu thức sau, đâu là đơn thức?
\(\dfrac{6}{x^2}\); \(\dfrac{x^2y}{2}\); \(\dfrac{-1}{x}\); \(\dfrac{x}{-5^2}\); \(\dfrac{-4}{5}\); \(\dfrac{-x^2y}{xy^2z}\)
Các đơn thức là :
\(\dfrac{x^2y}{2};\dfrac{x}{-5^2};\dfrac{-4}{5}\)
BT22: Trong các biểu thức sau, biểu thức nào là đơn thức?
\(\dfrac{6}{x^2},\dfrac{x^2y}{2},-\dfrac{1}{x},\dfrac{x}{-5^2},-\dfrac{4}{5},-\dfrac{x^2y}{xy^2z}\)
Thu gọn đa thức, tìm bậc và tính giá trị đa thức tại x = −1; y =1:
B=\(\dfrac{3}{4}XY^2-\dfrac{1}{3}X^2Y-\dfrac{5}{6}XY^2+2X^2Y\)
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)