Tính A=1+5+52+53+....+549+550
Thanks
A = 5 + 52 + 53 + ... + 549 + 550
Tính A
A = 5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹) - (5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰)
= 5⁵¹ - 5
⇒ A = (5⁵¹ - 5) : 4
Tính tổng sau:
A=2+22+23+...+219+220
B=5+52+53+...+550
C=1+3+32+33+...+3100
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
2A= 2(2+22+23+...+219+220)
2A= 22+23+24+...+220+221
2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)
A=221-2
Vậy A=221-2
Làm tương tự nhee
Chứng minh rằng:
a) A = 3 + 33 + 33 + ...+ 399 chia hết cho 13
b) B = 5 + 52 + 53 + ... + 550 chia hết cho 6
Sửa câu a
a)Ta có:
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)
\(A=39+...+3^{96}.39\)
\(A=39.\left(1+...+3^{96}\right)\)
Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13
Vậy A \(⋮\) 13
_________
b)Ta có:
\(B=5+5^2+5^3+...+5^{50}\)
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)
\(B=30+5^2.30+...+5^{48}.30\)
\(B=30.\left(1+5^2+...+5^{48}\right)\)
Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6
Vậy B \(⋮\) 6
a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)
=3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13
b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)
=5x6+...+549x6=6(5+..+549)⋮6.
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Ta có: A = 5 + 52 + 53 +....+ 5100
chia hết
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
cho A=1+5+52+53+...+52022,B=52023phần 8.Tính 2B-A
5A=5+5^2+...+5^2023
=>4A=5^2023-1
=>\(A=\dfrac{5^{2023}-1}{4}\)
\(2B-A=\dfrac{5^{2023}}{4}-\dfrac{5^{2023}-1}{4}=\dfrac{1}{4}\)
Cho Tìm số tự nhiên biết .
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
Tính tổng: A = 5 + 5 2 + 5 3 + ... + 5 96
Tính tổng A=5+52+53+...+52023
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
Cho S = 1 - 5 + 52 - 53 +.... + 598 - 599
a)Tính S b)CMR: 5100 chia cho 6 dư 1
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
e đang cần gấp, có ai đến giúp e ko?
\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)
Thực hiện phép tính
a, [ ( 52 - 43 ) 2 - ( 137-131)2 ] : 5
b, 549 : ( 34 - 22 . 5. ) - 9
a, [(52 - 43)2 - (137 - 131)2] : 5
=[81 - 36] : 5
=45 : 5
= 9
b, 549 :(34 - 22 . 5) - 9
= 549 : (81 - 4 . 5) -9
= 549 : (81 - 20) -9
= 549 : 61 -9
= 9 - 9
= 0
mình ko biết viết ngoặc nên bạn thêm vào chỗ cần thiết nhé!
a. 92- (137- 131)2 chia
92- 62 chia 5
81- 36 chia 5
45 chia 5
9